182 research outputs found

    Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia

    Get PDF
    In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-κB (NF-κB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-κB independent manner.

    Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups

    Get PDF
    Microarray analysis on pooled samples has previously identified ZDHHC9 (DHHC9) to be upregulated in colon adenocarcinoma compared to normal colon mucosa. Analyses of 168 samples from proximal and distal adenocarcinomas using U133plus2.0 microarrays validated these findings, showing a significant two-fold (log 2) upregulation of DHHC9 transcript (P<10(−6)). The upregulation was more striking in microsatellite stable (MSS), than in microsatellite instable (MSI), tumours. Genes known to interact with DHHC9 as H-Ras or N-Ras did not show expression differences between MSS and MSI. Immunohistochemical analysis was performed on 60 colon adenocarcinomas, previously analysed on microarrays, as well as on tissue microarrays with 40 stage I–IV tumours and 46 tumours from different organ sites. DHHC9 protein was strongly expressed in MSS compared to MSI tumours, readily detectable in premalignant lesions, compared to the rare expression seen in normal mucosa. DHHC9 was specific for tumours of the gastrointestinal tract and localised to the Golgi apparatus, in vitro and in vivo. Overexpression of DHHC9 decreased the proliferation of SW480 and CaCo2 MSS cell lines significantly. In conclusion, DHHC9 is a gastrointestinal-related protein highly expressed in MSS colon tumours. The palmitoyl transferase activity, modifying N-Ras and H-Ras, suggests DHHC9 as a target for anticancer drug design

    Tumour invasiveness, the local and systemic environment and the basis of staging systems in colorectal cancer

    Get PDF
    background: The present study aimed to examine the relationship between tumour invasiveness (T stage), the local and systemic environment and cancer-specific survival (CSS) of patients with primary operable colorectal cancer. methods: The tumour microenvironment was examined using measures of the inflammatory infiltrate (Klintrup-Makinen (KM) grade and Immunoscore), tumour stroma percentage (TSP) and tumour budding. The systemic inflammatory environment was examined using modified Glasgow Prognostic Score (mGPS) and neutrophil:lymphocyte ratio (NLR). A 5-year CSS was examined. results: A total of 331 patients were included. Increasing T stage was associated with colonic primary, N stage, poor differentiation, margin involvement and venous invasion (P&lt;0.05). T stage was significantly associated with KM grade (P=0.001), Immunoscore (P=0.016), TSP (P=0.006), tumour budding (P&lt;0.001), and elevated mGPS and NLR (both P&lt;0.05). In patients with T3 cancer, N stage stratified survival from 88 to 64%, whereas Immunoscore and budding stratified survival from 100 to 70% and from 91 to 56%, respectively. The Glasgow Microenvironment Score, a score based on KM grade and TSP, stratified survival from 93 to 58%. conclusions: Although associated with increasing T stage, local and systemic tumour environment characteristics, and in particular Immunoscore, budding, TSP and mGPS, are stage-independent determinants of survival and may be utilised in the staging of patients with primary operable colorectal cancer

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    Personalized medicine in psoriasis: developing a genomic classifier to predict histological response to Alefacept

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alefacept treatment is highly effective in a select group patients with moderate-to-severe psoriasis, and is an ideal candidate to develop systems to predict who will respond to therapy. A clinical trial of 22 patients with moderate to severe psoriasis treated with alefacept was conducted in 2002-2003, as a mechanism of action study. Patients were classified as responders or non-responders to alefacept based on histological criteria. Results of the original mechanism of action study have been published. Peripheral blood was collected at the start of this clinical trial, and a prior analysis demonstrated that gene expression in PBMCs differed between responders and non-responders, however, the analysis performed could not be used to predict response.</p> <p>Methods</p> <p>Microarray data from PBMCs of 16 of these patients was analyzed to generate a treatment response classifier. We used a discriminant analysis method that performs sample classification from gene expression data, via "nearest shrunken centroid method". Centroids are the average gene expression for each gene in each class divided by the within-class standard deviation for that gene.</p> <p>Results</p> <p>A disease response classifier using 23 genes was created to accurately predict response to alefacept (12.3% error rate). While the genes in this classifier should be considered as a group, some of the individual genes are of great interest, for example, cAMP response element modulator (CREM), v-MAF avian musculoaponeurotic fibrosarcoma oncogene family (MAFF), chloride intracellular channel protein 1 (CLIC1, also called NCC27), NLR family, pyrin domain-containing 1 (NLRP1), and CCL5 (chemokine, cc motif, ligand 5, also called regulated upon activation, normally T expressed, and presumably secreted/RANTES).</p> <p>Conclusions</p> <p>Although this study is small, and based on analysis of existing microarray data, we demonstrate that a treatment response classifier for alefacept can be created using gene expression of PBMCs in psoriasis. This preliminary study may provide a useful tool to predict response of psoriatic patients to alefacept.</p

    Increased expression of transcription factor TFAP2α correlates with chemosensitivity in advanced bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard treatment for patients with advanced transitional cell carcinoma of the bladder is platin based chemotherapy. Only approximately 50% of the patients respond to chemotherapy. Therefore, molecular predictive markers for identification of chemotherapy sensitive subgroups of patients are highly needed. We selected the transcription factor <it>TFAP2α </it>from a previously identified gene expression signature for chemotherapy response.</p> <p>Methods</p> <p><it>TFAP2α </it>expression and localization was assessed by immunohistochemistry using a tissue microarray (TMA) containing 282 bladder cancer tumors from patients with locally advanced (pT2-T4<sub>b </sub>and N<sub>1-3</sub>) or metastatic (M<sub>1</sub>) disease. All patients had received cisplatin containing chemotherapy. Furthermore, QPCR analysis of three <it>TFAP2α </it>isoforms was performed on tumor specimens of advanced muscle invasive bladder cancers (T2-4). Using the bladder cell lines T24 and SW780 the relation of <it>TFAP2α </it>and cisplatin and gemcitabine sensitivity as well as cell proliferation was examined using siRNA directed <it>TFAP2α </it>knockdown.</p> <p>Results</p> <p>TFAP2α protein expression was analyzed on a TMA with cores from 282 advanced bladder cancer tumors from patients treated with cisplatin based combinational chemotherapy. <it>TFAP2α </it>was identified as a strong independent predictive marker for a good response and survival after cisplatin-containing chemotherapy in patients with advanced bladder cancer. Strong TFAP2α nuclear and cytoplasmic staining predicted good response to chemotherapy in patients with lymph node metastasis, whereas weak TFAP2α nuclear staining predicted good response in patients without lymph node metastasis. In vitro studies showed that siRNA mediated knockdown of TFAP2α increased the proliferation of SW780 cells and rendered the cells less sensitive to cisplatin and gemcitabine. In contrast to that T24 bladder cells with mutated p53 showed to be more drug sensitive upon TFAP2α depletion.</p> <p>Conclusions</p> <p>High levels of nuclear and cytoplasmic TFAP2α protein were a predictor of increased overall survival and progression free survival in patients with advanced bladder cancer treated with cisplatin based chemotherapy. TFAP2α knockdown increased the proliferation of the SW780 bladder cells and reduced cisplatin and gemcitabine induced cell death. The inverse effect was observed in the <it>TP53 </it>mutated T24 cell line where TFAP2α silencing augmented cisplatin and gemcitabine sensitivity and did not stimulate proliferation.</p

    The calcium-binding protein S100P in normal and malignant human tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100P is a Ca<sup>2+ </sup>binding protein overexpressed in a variety of cancers, and thus, has been considered a potential tumor biomarker. Very little has been studied about its normal expression and functions.</p> <p>Methods</p> <p>We examined S100P expression in normal human tissues by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. S100P protein expression was also studied in a series of tumors, consisting of 74 ovarian, 11 pancreatic, 56 gastric, 57 colorectal, 89 breast and 193 prostate carcinomas using a novel anti-S100P monoclonal antibody.</p> <p>Results</p> <p>Among the normal tissues, the highest S100P mRNA levels were observed in the placenta and esophagus. Moderate signals were also detected in the stomach, duodenum, large intestine, prostate and leukocytes. At the protein level, the highest reactions for S100P were seen in the placenta and stomach. Immunostaining of tumor specimens showed that S100P protein is expressed in all the tumor categories included in the study, being most prevalent in gastric tumors.</p> <p>Conclusion</p> <p>Based on our observations, S100P is widely expressed in both normal and malignant tissues. The high expression in some tumors suggests that it may represent a potential target molecule for future diagnostic and therapeutic applications.</p

    Discovery and Validation of Molecular Biomarkers for Colorectal Adenomas and Cancer with Application to Blood Testing

    Get PDF
    BACKGROUND & AIMS: Colorectal cancer incidence and deaths are reduced by the detection and removal of early-stage, treatable neoplasia but we lack proven biomarkers sensitive for both cancer and pre-invasive adenomas. The aims of this study were to determine if adenomas and cancers exhibit characteristic patterns of biomarker expression and to explore whether a tissue-discovered (and validated) biomarker is differentially expressed in the plasma of patients with colorectal adenomas or cancer. METHODS: Candidate RNA biomarkers were identified by oligonucleotide microarray analysis of colorectal specimens (222 normal, 29 adenoma, 161 adenocarcinoma and 50 colitis) and validated in a previously untested cohort of 68 colorectal specimens using a custom-designed oligonucleotide microarray. One validated biomarker, KIAA1199, was assayed using qRT-PCR on plasma extracted RNA from 20 colonoscopy-confirmed healthy controls, 20 patients with adenoma, and 20 with cancer. RESULTS: Genome-wide analysis uncovered reproducible gene expression signatures for both adenomas and cancers compared to controls. 386/489 (79%) of the adenoma and 439/529 (83%) of the adenocarcinoma biomarkers were validated in independent tissues. We also identified genes differentially expressed in adenomas compared to cancer. KIAA1199 was selected for further analysis based on consistent up-regulation in neoplasia, previous studies and its interest as an uncharacterized gene. Plasma KIAA1199 RNA levels were significantly higher in patients with either cancer or adenoma (31/40) compared to neoplasia-free controls (6/20). CONCLUSIONS: Colorectal neoplasia exhibits characteristic patterns of gene expression. KIAA1199 is differentially expressed in neoplastic tissues and KIAA1199 transcripts are more abundant in the plasma of patients with either cancer or adenoma compared to controls

    Aberrant over-expression of a forkhead family member, FOXO1A, in a brain tumor cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian FOXO (forkhead box, O subclass) proteins are a family of pleiotropic transcription factors involved in the regulation of a broad range of cellular processes critical for survival. Despite the essential and diverse roles of the FOXO family members in human cells and their involvement in tumor pathogenesis, the regulation of <it>FOXO </it>expression remains poorly understood. We have addressed the mechanisms underlying the high level of expression of the <it>FOXO1A </it>gene in a cell line, PER-453, derived from a primitive neuroectodermal tumor of the central nervous system (CNS-PNET).</p> <p>Methods</p> <p>The status of the <it>FOXO1A </it>locus in the PER-453 CNS-PNET cell line was investigated by Southern blotting and DNA sequence analysis of the proximal promoter, 5'-UTR, open reading frame and 3'-UTR. FOXO1A expression was assessed by conventional and quantitative RT-PCR, Northern and Western blotting.</p> <p>Results</p> <p>Quantitative real-time RT-PCR (qRT-PCR) data indicated that after normalization to <it>ACTB </it>mRNA levels, canonical <it>FOXO1A </it>mRNA expression in the PER-453 cell line was 124-fold higher than the average level of five other CNS-PNET cell lines tested, 24-fold higher than the level in whole fetal brain, and 3.5-fold higher than the level in fetal brain germinal matrix cells. No mutations within the <it>FOXO1A </it>open reading frame or gross rearrangements of the <it>FOXO1A </it>locus were detected. However, a single nucleotide change within the proximal promoter and several nucleotide changes within the 3'-UTR were identified. In addition, two novel <it>FOXO1A </it>transcripts were isolated that differ from the canonical transcript by alternative splicing within the 3'-UTR.</p> <p>Conclusion</p> <p>The CNS-PNET cell line, PER-453, expresses <it>FOXO1A </it>at very high levels relative to most normal and cancer cells from a broad range of tissues. The <it>FOXO1A </it>open reading frame is wild type in the PER-453 cell line and the abnormally high <it>FOXO1A </it>mRNA expression is not due to mutations affecting the 5'-UTR or proximal promoter. Over expression of <it>FOXO1A </it>may be the result of PER-453 specific epimutations or imbalances in regulatory factors acting at the promoter and/or 3'-UTR.</p
    corecore