15 research outputs found

    Last Stop Before Exit – Hepatitis C Assembly and Release as Antiviral Drug Targets

    Get PDF
    Chronic Hepatitis C infection is a global health problem. While primary infection is often inapparent, it becomes chronic in most cases. Chronic infection with Hepatitis C virus (HCV) frequently leads to liver cirrhosis or liver cancer. Consequently, HCV infection is one of the leading causes for liver transplantation in industrialized countries. Current treatment is not HCV specific and is only effective in about half of the infected patients. This situation underlines the need for new antivirals against HCV. To develop new and more efficient drugs, it is essential to specifically target the different steps of the viral life cycle. Of those steps, the targeting of HCV assembly has the potential to abolish virus production. This review summarizes the advances in our understanding of HCV particle assembly and the identification of new antiviral targets of potential interest in this late step of the HCV life cycle

    Transstadial Transmission and Replication Kinetics of West Nile Virus Lineage 1 in Laboratory Reared Ixodes ricinus Ticks

    Get PDF
    West Nile virus (WNV) is a mosquito-borne agent that has also been isolated from several tick species. Vector competence of Ixodes ricinus, one of the most common tick species in Europe, has been poorly investigated for WNV to date. As such, to evaluate the vector competence, laboratory reared Ixodes ricinus nymphs were in vitro fed with WNV lineage 1 infectious blood, allowed to molt, and the resulting females artificially fed to study the virus transmission. Furthermore, we studied the kinetics of WNV replication in ticks after infecting nymphs using an automatic injector. Active replication of WNV was detected in injected nymphs from day 7 post-infection until 28 dpi. In the nymphs infected by artificial feeding, the transstadial transmission of WNV was confirmed molecularly in 46.7% of males, while virus transmission during in vitro feeding of I. ricinus females originating from infected nymphs was not registered. The long persistence of WNV in I. ricinus ticks did not correlate with the transmission of the virus and it is unlikely that I. ricinus represents a competent vector. However, there is a potential reservoir role that this tick species can play, with hosts potentially acquiring the viral agent after ingesting the infected ticks

    The Carboxy-Terminal Sequence of the Pestivirus Glycoprotein E(rns) Represents an Unusual Type of Membrane Anchor

    No full text
    The E(rns) protein is a structural glycoprotein of pestiviruses that lacks a typical membrane anchor sequence and is known to be secreted from the infected cell. However, major amounts of the protein are retained within the cell and attached to the virion by a so far unknown mechanism. Transient-expression studies with cDNA constructs showed that in a steady-state situation, 16% of the protein is found in the supernatant of the transfected cells while 84% appears as intracellular protein. We show here that E(rns) represents a membrane-bound protein. Membrane binding occurs via the carboxy-terminal region of E(rns). By fusion of this sequence to the carboxy terminus of green fluorescent protein (GFP), the subcellular localization of the reporter protein switched from cytosolic to membrane bound. A core sequence of 11 amino acids necessary for membrane binding was elicited in truncation experiments with GFP constructs. However, this peptide is not sufficient to confer membrane anchoring but needs either upstream or downstream accessory sequences. Analyses with different extraction procedures showed that E(rns) is neither easily stripped from the membrane, like a peripheral membrane protein, nor as tightly membrane bound as a transmembrane protein

    First Evidence of West Nile Virus Overwintering in Mosquitoes in Germany

    No full text
    Mosquitoes collected from mid-December 2020 to early March 2021 from hibernacula in northeastern Germany, a region of West Nile virus (WNV) activity since 2018, were examined for WNV-RNA. Among the 6101 mosquitoes tested in 722 pools of up to 12 specimens, one pool of 10 Culex pipiens complex mosquitoes collected in early March 2021 in the cellar of a medieval castle in Rosslau, federal state of Saxony-Anhalt, tested positive. Subsequent mosquito DNA analysis produced Culex pipiens biotype pipiens. The pool homogenate remaining after nucleic acid extraction failed to grow the virus on Vero and C6/36 cells. Sequencing of the viral NS2B-NS3 coding region, however, demonstrated high homology with virus strains previously collected in Germany, e.g., from humans, birds, and mosquitoes, which have been designated the East German WNV clade. The finding confirms the expectation that WNV can overwinter in mosquitoes in Germany, facilitating an early start to the natural transmission season in the subsequent year. On the other hand, the calculated low infection prevalence of 0.016–0.20%, depending on whether one or twelve of the mosquitoes in the positive pool was/were infected, indicates a slow epidemic progress and mirrors the still-hypoendemic situation in Germany. In any case, local overwintering of the virus in mosquitoes suggests its long-term persistence and an enduring public health issue

    Occludin, the final essential factor for HCV entry?

    No full text

    Mutation of Cysteine 171 of Pestivirus Erns RNase Prevents Homodimer Formation and Leads to Attenuation of Classical Swine Fever Virusâ–¿

    No full text
    Pestiviruses represent important pathogens of farm animals that have evolved unique strategies and functions to stay within their host populations. Erns, a structural glycoprotein of pestiviruses, exhibits RNase activity and represents a virulence factor of the viruses. Erns forms disulfide linked homodimers that are found in virions and virus-infected cells. Mutation or deletion of cysteine 171, the residue engaged in intermolecular disulfide bond formation, results in loss of dimerization as tested in coprecipitation and native protein gel electrophoresis analyses. Nevertheless, stable virus mutants with changes affecting cysteine codon 171 could be recovered in tissue culture. These mutants grew almost as well as the parental viruses and exhibited an RNase-positive phenotype. Erns dimerization-negative mutants of classical swine fever virus were found to be attenuated in pigs even though the virus clearly replicated and induced a significant neutralizing antibody response in the animals

    Serological Survey of Mosquito-Borne Arboviruses in Wild Birds from Important Migratory Hotspots in Romania

    No full text
    In the context of climate change, globalization, and enhanced human traveling, arboviruses continue to represent a threat to public health. West Nile and Usutu viruses are mosquito-borne viruses belonging to the Flaviviridae family (Flavivirus genus) and members of the Japanese encephalitis virus serocomplex. Included in the Togaviridae family (Alphavirus genus), the Sindbis virus is also vectored by mosquitoes. In the present study, we aimed to analyze the presence of antibodies concerning the abovementioned viruses in migratory and resident birds in the South-Eastern region of Romania, as avian hosts represent the main reservoir for human infection. Blood samples were collected from wild birds between May 2018 and October 2019 in nine locations from three counties. All the samples were serologically tested by ELISA and a serum neutralization test. Overall, a seroprevalence of 8.72% was registered for the West Nile virus, 2.71% for the Usutu virus, and 0% for the Sindbis virus. To our best knowledge, this is the first large-scale comprehensive study to assess the West Nile virus seropositivity in wild birds and the first serological confirmation of the Usutu virus in wild birds in Romania. Moreover, this is the only follow-up study reviewing the current seroprevalence of the Sindbis virus in Romania since 1975

    Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion.

    No full text
    International audienceIn hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein.HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine

    In action—an early warning system for the detection of unexpected or novel pathogens

    No full text
    Proactive approaches in preventing future epidemics include pathogen discovery prior to their emergence in human and/or animal populations. Playing an important role in pathogen discovery, high-throughput sequencing (HTS) enables the characterization of microbial and viral genetic diversity within a given sample. In particular, metagenomic HTS allows the unbiased taxonomic profiling of sequences; hence, it can identify novel and highly divergent pathogens such as viruses. Newly discovered viral sequences must be further investigated using genomic characterization, molecular and serological screening, and/or invitro and invivo characterization. Several outbreak and surveillance studies apply unbiased generic HTS to characterize the whole genome sequences of suspected pathogens. In contrast, this study aimed to screen for novel and unexpected pathogens in previously generated HTS datasets and use this information as a starting point for the establishment of an early warning system (EWS). As a proof of concept, the EWS was applied to HTS datasets and archived samples from the 2018–9 West Nile virus (WNV) epidemic in Germany. A metagenomics read classifier detected sequences related to genome sequences of various members of Riboviria. We focused the further EWS investigation on viruses belonging to the families Peribunyaviridae and Reoviridae, under suspicion of causing co-infections in WNV-infected birds. Phylogenetic analyses revealed that the reovirus genome sequences clustered with sequences assigned to the species Umatilla virus (UMAV), whereas a new peribunyavirid, tentatively named ‘Hedwig virus’ (HEDV), belonged to a putative novel genus of the family Peribunyaviridae. In follow-up studies, newly developed molecular diagnostic assays detected fourteen UMAV-positive wild birds from different German cities and eight HEDV-positive captive birds from two zoological gardens. UMAV was successfully cultivated in mosquito C6/36 cells inoculated with a blackbird liver. In conclusion, this study demonstrates the power of the applied EWS for the discovery and characterization of unexpected viruses in repurposed sequence datasets, followed by virus screening and cultivation using archived sample material. The EWS enhances the strategies for pathogen recognition before causing sporadic cases and massive outbreaks and proves to be a reliable tool for modern outbreak preparedness
    corecore