205 research outputs found

    PSI-ECRIT(S): a hybrid magnetic system with a mirror ratio of 10 for H-like heavy ion production and trapping

    Get PDF
    At the Paul Scherrer Institut ( PSI, Switzerland) an experimental program is started to measure the ground state shift and width of pionic hydrogen. To calibrate the crystal spectrometer X-ray transitions in hydrogen-like heavy ions (e.g. Ar17+) produced by ECR ion sources, are necessary. In PSI a superconducting cyclotron trap magnet originally developed for high energy experiments will be transformed into an ECR Ion Trap (ECRIT). The SC-magnet can deliver more than 4 Tesla magnetic fields with a mirror ratio of 2. A careful calculation showed this mirror ratio can be increased upto 10 and the trap can operate with frequencies between 5 and 20 GHz. To form a closed resonance zone a relatively large open structure (LBL-AECRU-type) NdFeB hexapole will be applied. The first tests will be performed with 6.4 GHz. Later higher frequencies (10 or 14.5 GHz) and the 2-frequency heating (6.4+10, 6.4+14.5 or 10+14.5) are planned to be applied to get enough quantity of H-like heavy ions. Since the main goal of this machine is to be a trap no extraction is necessary. However, for the fine-tuning of the plasma for very high charge states might require ion charge state spectrums to be analyzed. If this is the case a simple beamline at negative potential will be built. The present paper shows the results of the magnetic system calculations in details and summarises the present state of the ECRIT(S) overall design

    On the characterisation of a Bragg spectrometer with X-rays from an ECR source

    Get PDF
    Narrow X-ray lines from helium-like argon emitted from a dedicated ECR source have been used to determine the response function of a Bragg crystal spectrometer equipped with large area spherically bent silicon (111) or quartz (101ˉ\bar{1}) crystals. The measured spectra are compared with simulated ones created by a ray-tracing code based on the expected theoretical crystal's rocking curve and the geometry of the experimental set-up.Comment: Version acceptee (NIM

    Highly Charged Ion Production Using an Electrode in Biased and Floating Modes

    Get PDF
    One of the most popular ways to obtain higher beam intensities in ECR ion sources is to install an electrode (usually disc) into the plasma chamber. Examined this method in detail we found that majority of the groups observed the beam intensity improvement by supplying a suitable biased voltage to the electrode and an electron current was injected into the plasma. A few groups observed the enhancement, however, when the electrode operated at floating potential - without being an electron donor. Only a few (and sometimes contradictionary) information was found on the optimised properties of the electrodes, i.e. position, dimension, shape, material. In spite of the great success of the "biased-disc" method, the mechanism is still not completely clear. In this contribution, as one step of understanding, we examine what condition we observed the above mentioned two modes. The experiments were performed at the 18 GHz RIKEN and at the 14.5 GHz ATOMKI ECR ion sources. It was found that effect of the electrode is strongly depends on the local plasma parameters and on the position of the electrode. At certain mirror ratios and electrode positions we needed to negatively bias the electrode and inject electrons into the plasma. The electrode operated as an electron source (Electron Donor ED mode). At higher mirror ratios and other axial positions the electrode works by directly changing the plasma potential dip (Potential Tuner PT mode). These two modes were checked and successfully found both in continuos and in pulsed mode operation. In both (ED and PT) modes we generated higher highly charged ion currents in the RIKEN-ECRIS than without the electrode

    Ion Sources for MedAustron

    Get PDF
    The MedAustron Ion therapy center will be constructed in Wiener Neustadt (Austria) in the vicinity of Vienna. Its accelerator complex consists of four ion sources, a linear accelerator, a synchrotron and a beam delivery system to the three medical treatment rooms and to the research irradiation room. The ion sources shall deliver beams of H31+, C4+ and light ions with utmost reliability and stability. This paper describes the features of the ion sources presently planned for the MedAustron facility; such as ion source main parameters, gas injection, temperature control and cooling systems. A dedicated beam diagnostics technique is proposed in order to characterize ECR ions beams; in the first drift region after the ion source, a fraction of the mixed beam is selected via moveable aperture. With standard beam diagnostics, we then aim to produce position-dependant observables such as ion-current density, beam energy distribution and emittance for each charge states to be compared to simulations of ECR e-heating, plasma simulation, beam formation and transport
    • 

    corecore