PSI-ECRIT(S): a hybrid magnetic system with a mirror ratio of 10 for Hlike heavy ion production and trapping

S. Biri¹, L. Simons² and D. Hitz³

- 1) Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem tér 18/C, Hungary
- 2) Paul Scherrer Institut (PSI), CH-5232 Villigen AG, Switzerland
- 3) CEA/Grenoble, DRFMC/SI2A, 17 Rue des Martyrs, 38054 Grenoble, France

Abstract

At the Paul Scherrer Institut (PSI, Switzerland) an experimental program is started to measure the ground state shift and width of pionic hydrogen. To calibrate the crystal spectrometer X-ray transitions in hydrogen-like heavy ions (e.g. Ar^{17+}), produced by ECR ion sources, are necessary.

In PSI a superconducting cyclotron trap magnet, originally developed for particle physics experiments,, will be transformed into an ECR Ion Trap (ECRIT). The SC-magnet can deliver more than 4 Tesla magnetic fields with a mirror ratio of 2. A careful calculation showed this mirror ratio can be increased upto 10 and the trap can operate with frequencies between 5 and 20 GHz. To form a closed resonance zone a relatively large open structure (LBL AECR-U-type) NdFeB hexapole will be applied. The first tests will be performed at 6.4 GHz. Later higher frequencies (10 or 14.5 GHz) and the 2-frequency heating (6.4+10, 6.4+14.5 or 10+14.5 GHz) are planned to be applied to get enough quantity of H-like heavy ions.

Since the main goal of this machine is to be a trap no extraction is necessary. However, the fine-tuning of the plasma for very high charge states might require the ion charge state spectrums to be analyzed. If this is the case a simple beamline at negative potential will be built.

The present paper shows the results of the magnetic system calculations in detail and summarizes the present state of the ECRIT(S) overall design.

1. Introduction

At the Paul Scherrer Institute (Switzerland) an experiment is presently being set up [1], which intends to determine the strong interaction shift and width of the pionic hydrogen atom ground state by measuring Lyman X-rays with a high resolution Bragg crystal spectrometer. The experiment combines the use of the most intensive pion beam (more than 10^8 pions/s at a momentum of 100 MeV/c) produced by a proton beam of 1.5 mA current with a magnetic device (cyclotron trap) to stop pions in dilute matter. For the analysis and detection of the X--rays spherically the bent quartz crystals (diameter 100 mm with a curvature radius of 3000 mm) will be used together with state of the art CCD detectors (Fig.1).

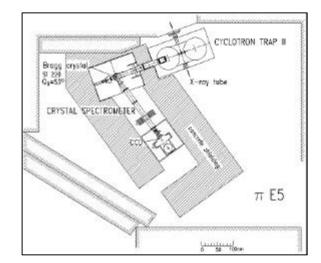
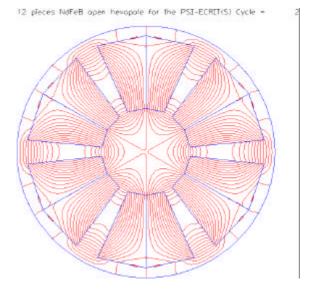


Fig.1. The original cyclotron magnet and beam line arrangement. A very similar arrangement will be used for the proposed experiment.

The binding energy of the p- π ground state is about 3228 eV and the expected strong interaction shift and width are about 7 eV and 1 eV, respectively. They both should be with a relative accuracy of determined which about percent, certainly one represents a challenge to present experimental techniques. It is therefore intended to tune and measure the resolution and the response function of the crystal offbeam with with X-rays of single electron ions (e.g. Ar^{17+}).


The most promising candidate for this purpose is an ECR ion source. In contrast to the EBITs in an ECRIS the ion motion is decoupled from the electron motion to a high degree. The ions have kinetic energies of only some eV and therefore a Doppler broadening of the X-rays is expected, which is negligible compared to the instrumental width of about 200 meV. This is in contrast to the width of fluorescence X-rays in the region of 3000 eV which are of the order of eV and in addition are distorted by satellite transitions.

Therefore it was decided to build an Electron Cyclotron Resonance Ion Trap (ECRIT) to produce X-rays coming from H-like heavy ions. The superconducting cyclotron trap magnet originally developed in PSI for high energy experiments will be transformed into an ECRIT. The details of the calculations of the magnetic system are presented here.

2. Calculation of the radial field

As it will be described in the next section a relatively long plasma chamber can be constructed in order to reach a very high mirror ratio. Estimates showed that a usual two-side axial pumping would not be enough to produce low basic pressure and high pumping speed which are necessary to get very high charge states in the plasma. Therefore an open structure NdFeB hexapole was chosen. At the calculations the LBL AECR-U [2] design was considered as starting point, however, all the geometrical and magnetic parameters were optimized for the current conditions and requirements. For the calculations the SUPERFISH/POISSON/PANDIRA group of codes [3] was used.

A relatively large internal diameter was chosen to increase the plasma volume. The open structure and the large diameter resulted in a magnetic field of about 1 Tesla at the chamber walls which allows safe resonance frequencies up to 20 GHz. Fig.2 and 3 show the resulted structure and magnetic fields. The radial pumping windows are usable for other purposes (gas inlet, microwave coupling, plasma diagnostics etc.).

Fig.2. Cross section view of the open hexapole. ID=90 *mm, OD*=240 *mm, length*=250 *mm, Br*=1.28 *T, Hcj*=21 *kOe.*

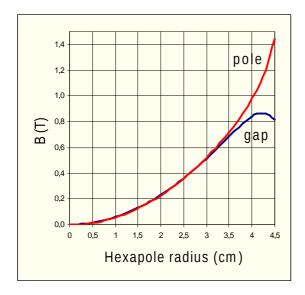
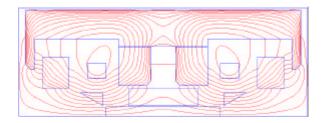



Fig.3. The radial magnetic induction at the poles and the gaps inside the open hexapole

3. Calculation of the SC axial field

The original mirror ratio of the SC cyclotron magnet was only 2 at the maximum coil current. The peak field could be 4.5 Tesla with a minimum of higher than 2 Tesla. POISSON calculations showed this mirror ratio can be increased upto 8...12 (depending on the coils current) by putting special iron plugs between the coils and smaller tips near the hexapole edges. An average of 10 can be considered. During the calculations a special difficulty was the extremely high force (more than 10 tons) effected on the coils and the opposite direction of some components of the force at even very low currents. The optimized geometry can be seen in Fig. 4. Fig.5 and Fig. 6 show the resulted magnetic field distributions and mirror ratios.

Fig.4. The modified arrangement of the PSI SC cyclotron trap.

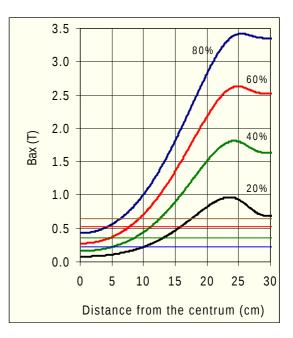


Fig.5. Axial distributions at different coils currents (20-40-60-80%). For symmetrical reasons only half of the curves are drawn.. The horizontal lines represent resonance values for 6.4, 10, 14.5 and 18 GHz.

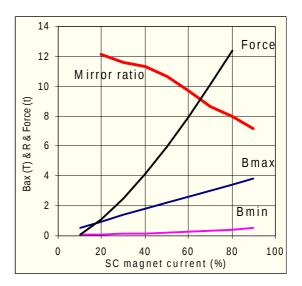
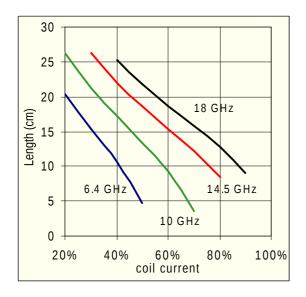



Fig.6. The peak and minimum fields on the axes together with their (mirror) ratio and with the force effects to one of the SC coils.

4. The complete magnetic system

Fig.7. shows the lengths of the resonance zones for 4 different frequencies. These frequencies (6.4, 10.0, 14.5, 18.0 GHz) are considered to be available for the PSI-ECRIT.

First a 6.4 GHz transmitter available at PSI will be used for tests. Then a 10.0 GHz transmitter will be borrowed from inside PSI. If none of these two or even their simultaneous coupling will give satisfactory result (enough quantity of Ar^{17+} ions) a 14.5 GHz generator must be bought or lent. This solution will also give the opportunity to try the 2-frequencies coupling (6.4+14.5 or 10+14.5 GHz).

Fig.7. The length of the resonance zone at different frequencies.

Fig.8 shows the resonance zones for the 3 most probable frequencies to be applied (50% magnet current).

Fig.8. TrapCAD [4] simulations of 3 resonance zones (6.4+10.0+14.5 GHz) with a flux tube. In the experiment 1 or 2 frequencies will be coupled.

5. ECRIT or ECRIS?

Since the main goal of this machine is to be a trap and no extraction is necessary. However, the fine-tuning of the plasma for very high charge states might require the ion charge spectrum to be analyzed. In this case a simple beamline at negative potential will be built. This way the ion source will still work at ground potential which keeps the mechanical design (especially the insulation) simpler.

6. Conclusion

In PSI a superconducting cyclotron trap will be transformed into an ECR Ion Trap (ECRIT) by placing a room-temperature, open structure NdFeB hexapole between the SC-coils. The resulted hybrid system has a very high mirror ratio in order to produce H-like heavy ions. The designing of the mechanics and ordering of the absent elements (hexapole, feeding. gas microwave, beamline) is in progress. The assembly of the ECRIT is expected in 2000. The first plasma and X-ray tests are planned to be performed in 2001.

References

[1] PSI proposal R-88-01.1: Measurement of the strong interaction width and shift of the ground state of pionic hydrogen, 1998. Edited by L. Simons.

[2] Z. Q. Xie and C. M. Lyneis, Proc. 13th Int. Workshop on ECRIS, College Station, TX, USA, 1997. Pp. 16-21.

[3] The POISSON SUPERFISH Codes, Los Alamos National Laboratory, LA-UR-96-1834, Maintained by J. Billen.

[4] J. Vamosi and S. Biri, Comp. Phys. Comm., **98**(1996)215, See also: http://www.atomki.hu/atomki/ECR/trapcad.htm