17 research outputs found

    Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes.

    No full text
    A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F(1) populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining >10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophosphorylase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening

    Single Nucleotide Polymorphisms in the Allene Oxide Synthase 2 Gene Are Associated With Field Resistance to Late Blight in Populations of Tetraploid Potato Cultivars

    No full text
    The oomycete Phytophthora infestans causes late blight, the most relevant disease of potato (Solanum tuberosum) worldwide. Field resistance to late blight is a complex trait. When potatoes are cultivated under long day conditions in temperate climates, this resistance is correlated with late plant maturity, an undesirable characteristic. Identification of natural gene variation underlying late blight resistance not compromised by late maturity will facilitate the selection of resistant cultivars and give new insight in the mechanisms controlling quantitative pathogen resistance. We tested 24 candidate loci for association with field resistance to late blight and plant maturity in a population of 184 tetraploid potato individuals. The individuals were genotyped for 230 single nucleotide polymorphisms (SNPs) and 166 microsatellite alleles. For association analysis we used a mixed model, taking into account population structure, kinship, allele substitution and interaction effects of the marker alleles at a locus with four allele doses. Nine SNPs were associated with maturity corrected resistance (P < 0.001), which collectively explained 50% of the genetic variance of this trait. A major association was found at the StAOS2 locus encoding allene oxide synthase 2, a key enzyme in the biosynthesis of jasmonates, plant hormones that function in defense signaling. This finding supports StAOS2 as being one of the factors controlling natural variation of pathogen resistance

    The FANCC–FANCE–FANCF complex is evolutionarily conserved and regulates meiotic recombination

    No full text
    At meiosis, programmed meiotic DNA double-strand breaks are repaired via homologous recombination, resulting in crossovers (COs). From a large excess of DNA double-strand breaks that are formed, only a small proportion gets converted into COs because of active mechanisms that restrict CO formation. The Fanconi anemia (FA) complex proteins AtFANCM, MHF1 and MHF2 were previously identified in a genetic screen as anti-CO factors that function during meiosis in Arabidopsis thaliana. Here, pursuing the same screen, we identify FANCC as a new anti-CO gene. FANCC was previously only identified in mammals because of low primary sequence conservation. We show that FANCC, and its physical interaction with FANCE-FANCF, is conserved from vertebrates to plants. Further, we show that FANCC, together with its subcomplex partners FANCE and FANCF, regulates meiotic recombination. Mutations of any of these three genes partially rescues CO-defective mutants, which is particularly marked in female meiosis. Functional loss of FANCC, FANCE, or FANCF results in synthetic meiotic catastrophe with the pro-CO factor MUS81. This work reveals that FANCC is conserved outside mammals and has an anti-CO role during meiosis together with FANCE and FANCF. Plain language summary The Fanconi Anemia (FA) pathway is the subject of intense interest owing to the role of FA as a tumor suppressor. Three FA complex proteins, FANCM, MHF1 and MHF2, were identified as factors that suppress crossover during meiosis in the model plant Arabidopsis thaliana. Here, the authors extended these findings and identified a novel anti-crossover factor and showed that it encodes the plant FANCC homolog, which was previously thought to be vertebrate-specific. They further showed that FANCC regulates meiotic crossover together with two other FA proteins, FANCE and FANCF. This suggests that the FANCC–E–F subcomplex was already regulating DNA repair in the common ancestor of all living eukaryotes
    corecore