556 research outputs found

    Quantum cascade lasers in biomedical infrared imaging

    Get PDF
    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes

    Quantum cascade laser-based mid-infrared spectrochemical imaging of tissue and biofluids

    Get PDF
    Mid-infrared spectroscopic imaging is a rapidly emerging technique in biomedical research and clinical diagnostics that takes advantage of the unique molecular fingerprint of cells, tissue and biofluids to provide a rich biochemical image without the need for staining. Spectroscopic analysis allows for the objective classification of biological material at a molecular level.1 This “label free” molecular imaging technique has been applied to histology, cytology, surgical pathology, microbiology and stem cell research, and can be used to detect subtle changes to the genome, proteome and metabolome.2,3,4 The new wealth of biochemical information made available by this technique has the distinct potential to improve cancer patient outcome through the identification of earlier stages of disease, drug resistance, new disease states and high-risk populations.4 However, despite the maturity of this science, instrumentation that provide increased sample throughput, improved image quality, a small footprint, low maintenance and require minimal spectral expertise are essential for clinical translation

    Effects of Electrolyte on Redox Potentials

    Get PDF
    Redox potentials, especially as measured by cyclic voltammetry and related electrochemical techniques, are the basis for understanding energetics of photochemical solar energy storage, organic photovoltaics, light-emitting diodes, and even photosynthesis. These very popular techniques are dominant although none of the energy systems just mentioned contain large concentrations, typically 100 mM, of supporting electrolyte needed for electrochemical techniques to work. At the same time, the added electrolytes often have large, but unknown effects on the energetics studied. Despite substantial efforts using microelectrodes, it has not been possible to utilize electrochemical techniques to measure redox potentials in the absence of electrolytes. This chapter will be an account of new techniques applying the method of pulse radiolysis to partly answer the question: what is the effect of electrolytes on redox potentials

    Introducing discrete frequency infrared technology for high-throughput biofluid screening

    Get PDF
    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%

    Trabecular bone structure of the proximal capitate in extant hominids and fossil hominins with implications for midcarpal joint loading and the dart‐thrower's motion

    Get PDF
    Objectives: This research examines whether the distribution of trabecular bone in the proximal capitates of extant hominids, as well as several fossil hominin taxa, is associated with the oblique path of the midcarpal joint known as the dart‐thrower's motion (DTM). Materials and Methods: We analyzed proximal capitates from extant (Pongo n = 12; Gorilla n = 11; Pan n = 10; fossil and recent Homo sapiens n = 29) and extinct (Australopithecus sediba n = 2; Homo naledi n = 1; Homo floresiensis n = 2; Neandertals n = 3) hominids using a new canonical holistic morphometric analysis, which quantifies and visualizes the distribution of trabecular bone using relative bone volume as a fraction of total volume (rBV/TV). Results: Homo sapiens and Neandertals had a continuous band of high rBV/TV that extended across the scaphoid, lunate, and hamate subarticular regions, but other fossil hominins and extant great apes did not. A. sediba expressed a distinct combination of human‐like and Pan‐like rBV/TV distribution. Both H. floresiensis and H. naledi had high rBV/TV on the ulnar‐side of the capitate but low rBV/TV on the radial‐side. Conclusion: The proximal capitates of H. sapiens and Neandertals share a distinctive distribution of trabecular bone that suggests that these two species of Homo regularly load(ed) their midcarpal joints along the full extent of the oblique path of the DTM. The observed pattern in A. sediba suggests that human‐like stress at the capito‐scaphoid articular surface was combined with Pan‐like wrist postures, whereas the patterns in H. floresiensis and H. naledi suggest their midcarpal joints were loaded differently from that of H. sapiens and Neandertals

    Searching for the Kuhnian moment : the Black-Scholes-Merton formula and the evolution of modern finance theory

    Get PDF
    The Black-Scholes-Merton formula has been put to widespread use by options traders because it provides a means of calculating the theoretically 'correct' price of stock options. Traders can therefore see whether the market price of stock options undervalues or overvalues them compared with their hypothetical Black-Scholes-Merton price, before choosing to buy or sell options accordingly. As a consequence of this close relationship between options pricing theory and options pricing practice, a strong performativity loop was activated, whereby market prices quickly converged on the hypothetical Black-Scholes-Merton prices following the dissemination of the formula. The theory has therefore had significant real-world effects, but how should we characterize the initial instinct to derive the theory from a philosophy of science perspective? The two books under review suggest that a Kuhnian reading of the advancement of scientific knowledge might well be the most appropriate. But, on closer inspection, it becomes clear that the publication of the Black-Scholes-Merton formula should not be seen as a Kuhnian moment with paradigm-shaping attributes. It is shown that, at most, the formula acts as an important exemplar which, via its use in the training of options pricing theorists and options pricing practitioners, reinforces the entrenchment of finance theory within the orthodox economics worldview

    Fast-evolving noncoding sequences in the human genome

    Get PDF
    BACKGROUND: Gene regulation is considered one of the driving forces of evolution. Although protein-coding DNA sequences and RNA genes have been subject to recent evolutionary events in the human lineage, it has been hypothesized that the large phenotypic divergence between humans and chimpanzees has been driven mainly by changes in gene regulation rather than altered protein-coding gene sequences. Comparative analysis of vertebrate genomes has revealed an abundance of evolutionarily conserved but noncoding sequences. These conserved noncoding (CNC) sequences may well harbor critical regulatory variants that have driven recent human evolution. RESULTS: Here we identify 1,356 CNC sequences that appear to have undergone dramatic human-specific changes in selective pressures, at least 15% of which have substitution rates significantly above that expected under neutrality. The 1,356 'accelerated CNC' (ANC) sequences are enriched in recent segmental duplications, suggesting a recent change in selective constraint following duplication. In addition, single nucleotide polymorphisms within ANC sequences have a significant excess of high frequency derived alleles and high F(ST)values relative to controls, indicating that acceleration and positive selection are recent in human populations. Finally, a significant number of single nucleotide polymorphisms within ANC sequences are associated with changes in gene expression. The probability of variation in an ANC sequence being associated with a gene expression phenotype is fivefold higher than variation in a control CNC sequence. CONCLUSION: Our analysis suggests that ANC sequences have until very recently played a role in human evolution, potentially through lineage-specific changes in gene regulation

    Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    Get PDF
    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-ÎŽ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-ÎŽ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc
    • 

    corecore