901 research outputs found

    A Bioinspired Active Robotic Simulator of the Human Respiratory System

    Get PDF
    Pathologies affecting the respiratory system can lead to a debilitating decrease in quality of life and can be fatal. To test medical devices and implants for the human respiratory system, a simulation system that can reproduce multiple respiratory features is necessary. Currently available respiratory simulators only focus on reproducing flow rate profiles of breathing while coughing simulators focus on aerosol analysis. In this paper we propose a novel, bioinspired robotic simulator that can physically replicate both breathing and coughing flow rate characteristics of healthy adults. We conducted a study on 31 healthy adult participants to gather the flow rate measurement of normal breathing, deep breathing, breathing while running and coughing. Coughing flow rate profiles vary considerably between participants, making an accurate simulation of coughs a challenge. To enable cough flow rate simulation, a new methodology based on the identification of four cough phases, Attack, Decay, Sustain and Release (ADSR) and their parametrization was devised. This methodology leads to the unprecedented ability to reproduce diverse and complex coughing flow rate profiles. Our simulator is able to reproduce respiratory flows with a root mean square error (RMSE) of 1.8 L/min between normal participant breathing and its simulation, 5% of the maximum flow rate simulated for that participant (pMFR), an RMSE of 10.08 L/min for deep breathing, 18% of the pMFR and an RMSE of 13.29 L/min for exertion breathing, 17% of pMFR. For the simulation of an average cough we recorded an RMSE of 51.43 L/min, 13% of the pMFR and for a low flow rate cough an RMSE of 12.38 L/min, 9.5% of the pMFR. The presented simulator matches the fundamentals of human breathing and coughing, advancing the current capability of respiratory system simulators

    Respiratory simulator for robotic respiratory tract treatments

    Get PDF
    Robotic healthcare is a growing and multi-faceted field where robots help perform surgery, remotely provide care to patients, aid in supplying various physical therapies and further medical research. Robotic simulators of human physiology provide a powerful platform to advance the development of novel treatments, prostheses and therapies. This study focuses on the design, building, testing and characterisation of a novel simulator of the human respiratory system. The comparison between healthy subjects breathing and coughing physiological values and the values achieved utilising our novel bioinspired respiratory simulator shows that the latter is able to reproduce peak flow rates and volumes

    Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Get PDF
    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g(-1)). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM(-1) s(-1) and 185.58 mM(-1) s(-1) respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed

    Prediction of larynx function using multichannel surface EMG classification

    Get PDF
    Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4 % (swallows), 93.8 ± 2.8 % (coughs) and 70.5 ± 5.4 % (speech) for controls, and 67.7 ± 4.4 % (swallows), 71.0 ± 9.1 % (coughs) and 78.0 ± 3.8 % (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9 % of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1 % in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device

    Random-matrix theory of amplifying and absorbing resonators with PT or PTT' symmetry

    Full text link
    We formulate gaussian and circular random-matrix models representing a coupled system consisting of an absorbing and an amplifying resonator, which are mutually related by a generalized time-reversal symmetry. Motivated by optical realizations of such systems we consider a PT or a PTT' time-reversal symmetry, which impose different constraints on magneto-optical effects, and then focus on five common settings. For each of these, we determine the eigenvalue distribution in the complex plane in the short-wavelength limit, which reveals that the fraction of real eigenvalues among all eigenvalues in the spectrum vanishes if all classical scales are kept fixed. Numerically, we find that the transition from real to complex eigenvalues in the various ensembles display a different dependence on the coupling strength between the two resonators. These differences can be linked to the level spacing statistics in the hermitian limit of the considered models.Comment: 19 pages, 9 figure

    The incidence of AGN in galaxies with different stellar population ages

    Get PDF
    It has been argued that recycled gas from stellar mass loss in galaxies might serve as an important fuelling source for black holes (BHs) in their centers. Utilizing spectroscopic samples of galaxies from the Sloan Digital Sky Survey (SDSS) at z=0−0.35z = 0-0.35 and the Large Early Galaxy Astrophysics Census (LEGA-C) survey at z=0.6−1z = 0.6-1 that have X-ray coverage from XMM-Newton or Chandra, we test this stellar mass loss fuelling scenario by investigating how AGN activity and BH growth vary with the break strength at 4000 A˚\r{A}, Dn4000\rm D_{n}4000 (which is closely related to the age of stellar populations), as younger galaxies are considered to have higher stellar mass loss rates. We found that when controlling for host-galaxy properties, the fraction of log LXL_{\rm X}/M⋆M_\star > 32 (which roughly corresponds to Eddington ratios ≳1\gtrsim 1%) AGN and sample-averaged black hole accretion rate (BHAR‾\rm \overline{BHAR}) decrease with Dn4000\rm D_{n}4000 among Dn4000\rm D_{n}4000 ≲\lesssim 1.9 galaxies, suggesting a higher level of AGN activity among younger galaxies, which supports the stellar mass loss fuelling scenario. For the oldest and most massive galaxies at z=0−0.35z = 0-0.35, this decreasing trend is not present anymore. We found that, among these most massive galaxies at low redshift, the fraction of low specific-accretion-rate (31 << log LXL_{\rm X}/M⋆M_\star << 32) AGNs increases with Dn4000\rm D_{n}4000, which may be associated with additional fuelling from hot halo gas and/or enhanced accretion capability.Comment: 24 pages, 28 figures. Accepted for publication in MNRA

    Changing from face-to-face to virtual meetings due to the COVID-19 pandemic: Protocol for a mixed-methods study exploring the impact on cancer multidisciplinary team (MDT) meetings

    Get PDF
    INTRODUCTION: In the UK, the National Cancer Plan (2000) requires every cancer patient’s care to be reviewed by a multidisciplinary team (MDT). Since the introduction of these guidelines, MDTs have faced escalating demands with increasing numbers and complexity of cases. The COVID-19 pandemic has presented MDTs with the challenge of running MDT meetings virtually rather than face-to-face. This study aims to explore how the change from face-to-face to virtual MDT meetings during the COVID-19 pandemic may have impacted the effectiveness of decision-making in cancer MDT meetings and to make recommendations to improve future cancer MDT working based on the findings. METHODS AND ANALYSIS: A mixed-methods study with three parallel phases: Semistructured remote qualitative interviews with ≤40 cancer MDT members. A national cross-sectional online survey of cancer MDT members in England, using a validated questionnaire with both multiple-choice and free-text questions. Live observations of ≥6 virtual/hybrid cancer MDT meetings at four NHS Trusts. Participants will be recruited from Cancer Alliances in England. Data collection tools have been developed in consultation with stakeholders, based on a conceptual framework devised from decision-making models and MDT guidelines. Quantitative data will be summarised descriptively, and χ2 tests run to explore associations. Qualitative data will be analysed using applied thematic analysis. Using a convergent design, mixed-methods data will be triangulated guided by the conceptual framework. The study has been approved by NHS Research Ethics Committee (London—Hampstead) (22/HRA/0177). The results will be shared through peer-reviewed journals and academic conferences. A report summarising key findings will be used to develop a resource pack for MDTs to translate learnings from this study into improved effectiveness of virtual MDT meetings. The study has been registered on the Open Science Framework (https://doi.org/10.17605/OSF.IO/D2NHW)
    • …
    corecore