47 research outputs found
DSAF: A Dual-Stage Adaptive Framework for Numerical Weather Prediction Downscaling
While widely recognized as one of the most substantial weather forecasting
methodologies, Numerical Weather Prediction (NWP) usually suffers from
relatively coarse resolution and inevitable bias due to tempo-spatial
discretization, physical parametrization process, and computation limitation.
With the roaring growth of deep learning-based techniques, we propose the
Dual-Stage Adaptive Framework (DSAF), a novel framework to address regional NWP
downscaling and bias correction tasks. DSAF uniquely incorporates adaptive
elements in its design to ensure a flexible response to evolving weather
conditions. Specifically, NWP downscaling and correction are well-decoupled in
the framework and can be applied independently, which strategically guides the
optimization trajectory of the model. Utilizing a multi-task learning mechanism
and an uncertainty-weighted loss function, DSAF facilitates balanced training
across various weather factors. Additionally, our specifically designed
attention-centric learnable module effectively integrates geographic
information, proficiently managing complex interrelationships. Experimental
validation on the ECMWF operational forecast (HRES) and reanalysis (ERA5)
archive demonstrates DSAF's superior performance over existing state-of-the-art
models and shows substantial improvements when existing models are augmented
using our proposed modules. Code is publicly available at
https://github.com/pengwei07/DSAF
Selecting a better valuation model to measure bubble level of stocks price: empirical study from internet-based finance stocks in A-share market
As a star of emerging industries in China, internet-based finance
has been developing rapidly. This paper, considers selecting a
more suitable valuation model to measure the intrinsic value
and price bubble of Internet-based Finance stocks. By comparing
the relative valuation accuracy of the Kim et al. model with
the Frankel-Lee model and the F-O model applied in the prior
studies, this study finds that the Kim et al. model highlights the
industry-specific features and outperforms other models in
interpreting stocks price variation. Especially, under the circumstance
of soaring and slumping stocks price variation (e.g.
2015), it is essential to study the price bubbles of internetbased
finance stocks at different points of Shanghai Stock
Exchange Composite Index. Surprisingly, our empirical results
suggest that the internet-based finance stocks have negative
bubbles at the whole average level, and about half of them are
undervalued. Moreover, there are positive correlations between
the bubble level and three key factors including the trading
volume, the price to book ratio and whether to do cross-industry
business on internet-based finance. These findings imply
that the Kim et al. model contributes to improving valuation
accuracy of internet-based finance stocks and explainability of
the price bubbles in A-share market
Cytokine-Based Generation of CD49a+Eomes−/+ Natural Killer Cell Subsets
Recent studies have identified CD49a+Eomes− and CD49a+Eomes+ subsets of tissue-resident NK (trNK) cells in different organs of the mouse. However, the characteristics of CD49a+Eomes−/+ NK cell development and the regulation of Eomes expression in NK cells remain unclear. Here, we established an in vitro cytokine-based feeder-free system in which bone marrow progenitor cells differentiate into CD49a+ NK cells. IL-15 was identified as being the key cytokine in this system that supported the development and maintenance of CD49a+ NK cells. The CD49a+ NK cells generated were Eomes−CD49b− and shared the same phenotype as hepatic trNK cells. IL-4 induced the expression of Eomes in generated NK cells and converted them into CD49a+Eomes+ cells, which were phenotypically and functionally similar to uterine trNK cells. Moreover, the IL-4/STAT6 axis was identified as being important in the generation of CD49a+Eomes+ induced NK cells. Collectively, these studies describe an approach to generate CD49a+Eomes−/+ subsets of NK cells and demonstrate important roles for IL-15 and IL-4 in the differentiation of these cells. These findings have potential for developmental research underlying the generation of different subsets of NK cells and the application of adoptive NK cell transfer therapies
TGF-β1 Down-Regulation of NKG2D/DAP10 and 2B4/SAP Expression on Human NK Cells Contributes to HBV Persistence
The mechanism underlying persistent hepatitis B virus (HBV) infection remains unclear. We investigated the role of innate immune responses to persistent HBV infection in 154 HBV-infected patients and 95 healthy controls. The expression of NKG2D- and 2B4-activating receptors on NK cells was significantly decreased, and moreover, the expression of DAP10 and SAP, the intracellular adaptor proteins of NKG2D and 2B4 (respectively), were lower, which then impaired NK cell-mediated cytotoxic capacity and interferon-γ production. Higher concentrations of transforming growth factor-beta 1 (TGF-β1) were found in sera from persistently infected HBV patients. TGF-β1 down-regulated the expression of NKG2D and 2B4 on NK cells in our in vitro study, leading to an impairment of their effector functions. Anti-TGF-β1 antibodies could restore the expression of NKG2D and 2B4 on NK cells in vitro. Furthermore, TGF-β1 induced cell-cycle arrest in NK cells by up-regulating the expression of p15 and p21 in NK cells from immunotolerant (IT) patients. We conclude that TGF-β1 may reduce the expression of NKG2D/DAP10 and 2B4/SAP, and those IT patients who are deficient in these double-activating signals have impaired NK cell function, which is correlated with persistent HBV infection
Molecular Dynamics Simulation on the Diffusion of Flavor, O2 and H2O Molecules in LDPE Film
The diffusion of five flavor organic molecules, including D-limonene, myrcene, ethyl hexanoate, 2-nonanone, and linalool in low density polyethylene (LDPE) film were investigated by combined experimental and molecular dynamics (MD) simulation studies. The diffusion coefficients derived from the prediction model, experimental determination, and MD simulation were compared, and the related microscopic diffusion mechanism was investigated. The effects of the presence of the flavor organic molecules on the diffusion of O2 and H2O in polyethylene (PE) were also studied by MD simulation. Results show that: The diffusion of five flavor molecules in LDPE is well followed to Fick’s second law by the immersion experiment; MD simulation indicates the dual mode diffusion mechanism of the flavor molecules is in LDPE; the diffusion coefficients from MD simulation are close to those from the experimental determination, but are slightly larger than those values; the presence of the flavor organic molecules hinders the diffusion of O2 and H2O, which can be well explained from the fraction of free volume (FFV) and interaction energy calculation results derived from MD simulation
Influence of Calcination Temperature on the Structure and Visible Light Photocatalysis Performance of Mn–TiO2-Loaded Wooden Activated Carbon Fibers
Mn–TiO2-loaded wooden activated carbon fibers (Mn/TiO2-WACF) were prepared through sol–gel and impregnation methods and characterized by X-ray diffractometer, scanning electron microscope, Fourier transform IR spectrometer, and automatic adsorption apparatus to observe the influence of load calcination temperature on its morphological structure and visible light photocatalysis performance. Results showed that Mn doping elevated the phase transformation temperature (650 °C–750 °C) of TiO2 in Mn/TiO2-WACF; the particle size of anatase TiO2 in the sample gradually enlarged with the increase of calcination temperature. The N2 adsorbing quantity of Mn/TiO2-WACF sample initially increased and then decreased as calcination temperature increased, and 650 °C became the turning point of its N2 adsorbing quantity. The degradation methylene blue solution for Mn/TiO2-WACF sample under visible light gradually decreased with the increase of calcination temperature, and the methylene blue solution degradation by the sample obtained under 450 °C calcination temperature reached 93%
Traditional Village research based on culture-landscape genes: a Case of Tujia traditional villages in Shizhu, Chongqing, China
Global urbanization has led to severe damage and even disappearance of traditional villages in large numbers, significantly impacting the diversity of cultural landscapes. To effectively protect and inherit the cultural landscape of traditional villages, this study proposes the “culture-landscape genes” theory and its double-chain model. Taking the traditional Tujia villages in Shizhu County, Chongqing Municipality, China as an example, we identify, extract, correspond, encode, and comprehensively evaluate their culture-landscape genes. Based on the evaluation and analysis results, corresponding protection and development strategies are formulated. The study indicates that: firstly, the identification, extraction, and correlation of genes directly influence the construction of the evaluation system and the assessment of the protection level. Secondly, the comprehensive evaluation system under the double-chain model is more scientific and reasonable compared to the single-gene model of cultural or landscape genes. The culture-landscape genes theory proposed in this study promotes the development of the gene theory of traditional villages, and its double-chain research model effectively supplements the current methods for the protection and sustainable development of traditional villages, demonstrating a wide range of application value
Revision of two species of Sinopotamon Bott, 1967 (Crustacea, Brachyura, Potamidae) endemic to China: a new combination and a new synonym
The systematics of two problematic potamid species, Sinopotamon koatenense (Rathbun, 1904) and Sinopotamon wuyiensis Li, Lin, Cheng & Tang, 1985, both originally described from the Wuyi Mountains are resolved in this study. Sinopotamon koatenense is transferred to the genus Huananpotamon Dai & Ng, 1994, as the new combination Huananpotamon koatenense comb. nov. The new combination differs from its congeners in the form of the carapace, male pleon, male first gonopod, and vulvae. Phylogenetic analyses based on mitochondrial 16S rDNA sequences support the identification of Huananpotamon koatenense comb. nov. and a redescription is also provided. In addition, S. wuyiensis is confirmed as a junior synonym of Sinopotamon fukienense Dai & Chen, 1979 based on morphological similarities and phylogenetic lineages
Influenza vaccine induces intracellular immune memory of human NK cells.
Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future