DSAF: A Dual-Stage Adaptive Framework for Numerical Weather Prediction Downscaling

Abstract

While widely recognized as one of the most substantial weather forecasting methodologies, Numerical Weather Prediction (NWP) usually suffers from relatively coarse resolution and inevitable bias due to tempo-spatial discretization, physical parametrization process, and computation limitation. With the roaring growth of deep learning-based techniques, we propose the Dual-Stage Adaptive Framework (DSAF), a novel framework to address regional NWP downscaling and bias correction tasks. DSAF uniquely incorporates adaptive elements in its design to ensure a flexible response to evolving weather conditions. Specifically, NWP downscaling and correction are well-decoupled in the framework and can be applied independently, which strategically guides the optimization trajectory of the model. Utilizing a multi-task learning mechanism and an uncertainty-weighted loss function, DSAF facilitates balanced training across various weather factors. Additionally, our specifically designed attention-centric learnable module effectively integrates geographic information, proficiently managing complex interrelationships. Experimental validation on the ECMWF operational forecast (HRES) and reanalysis (ERA5) archive demonstrates DSAF's superior performance over existing state-of-the-art models and shows substantial improvements when existing models are augmented using our proposed modules. Code is publicly available at https://github.com/pengwei07/DSAF

    Similar works

    Full text

    thumbnail-image

    Available Versions