1,285 research outputs found

    Collodial particles at a range of fluid-fluid particles

    Get PDF
    The study of solid particles residing at fluid-fluid interfaces has become an established area in surface and colloid science recently experiencing a renaissance since around 2000. Particles at interfaces arise in many industrial products and processes like anti-foam formulations, crude oil emulsions, aerated foodstuffs and flotation. Although they act in many ways like traditional surfactant molecules, they offer distinct advantages also and the area is now multi-disciplinary involving research in the fundamental science and potential applications. In this Feature Article, a flavour of some of this interest is given based on recent work from our own group and includes the behaviour of particles at oil-water, air-water, oil-oil, air-oil and water-water interfaces. The materials capable of being prepared by assembling various kinds of particles at fluid interfaces include particle-stabilised emulsions, particle-stabilised aqueous and oil foams, dry liquids, liquid marbles and powdered emulsions

    Pickering emulsions stabilized by hydrophilic nanoparticles: in situ surface modification by oil

    Get PDF
    We propose a novel route for the stabilization of oil-in-water Pickering emulsions using inherently hydrophilic nanoparticles. In the case of dialkyl adipate oils, in situ hydrophobisation of the particles by dissolved oil molecules in the aqueous phase enables stable emulsions to be formed. Emulsion stability is enhanced upon decreasing the chain length of the oil due to its increased solubility in the precursor aqueous phase. The oil thus acts like a surfactant in this respect in which hydrogen bonds form between the carbonyl group of the ester oil and the hydroxyl group on particle surfaces. The particles chosen include both fumed and precipitated anionic silica and cationic zirconia. Complementary experiments including relevant oil–water–solid contact angles and infra-red analysis of dried particles after contact with oil support the proposed mechanism

    Ultra-stable self-foaming oils

    Get PDF
    This paper is concerned with the foaming of a range of fats in the absence of added foaming agent/emulsifier. By controlling the temperature on warming from the solid or cooling from the melt, crystals of high melting triglycerides form in a continuous phase of low melting triglycerides. Such crystal dispersions in oil can be aerated to produce whipped oils of high foamability and extremely high stability. The foams do not exhibit drainage and bubbles neither coarsen nor coalesce as they become coated with solid crystals. The majority of the findings relate to coconut oil but the same phenomenon occurs in shea butter, cocoa butter and palm kernel stearin. For each fat, there exists an optimum temperature for foaming at which the solid fat content reaches up to around 30%. We demonstrate that the oil foams are temperature-responsive and foam collapse can be controllably triggered by warming the foam to around the melting point of the crystals. Our hypothesis is given credence in the case of the pure system of tristearin crystals in liquid tricaprylin

    Oil-in-oil emulsions stabilised solely by solid particles

    Get PDF
    A brief review of the stabilisation of emulsions of two immiscible oils is given. We then describe the use of fumed silica particles coated with either hydrocarbon or fluorocarbon groups in acting as sole stabilisers of emulsions of various vegetable oils with linear silicone oils (PDMS) of different viscosity. Transitional phase inversion of emulsions, containing equal volumes of the two oils, from silicone-invegetable (S/V) to vegetable-in-silicone (V/S) occurs upon increasing the hydrophobicity of the particles. Close to inversion, emulsions are stable to coalescence and gravity-induced separation for at least one year. Increasing the viscosity of the silicone oil enables stable S/V emulsions to be prepared even with relatively hydrophilic particles. Predictions of emulsion type from calculated contact angles of a silica particle at the oil–oil interface are in agreement with experiment provided a small polar contribution to the surface energy of the oils is included. We also show that stable multiple emulsions of V/S/V can be prepared in a two-step procedure using two particle types of different hydrophobicity. At fixed particle concentration, catastrophic phase inversion of emulsions from V/S to S/V can be effected by increasing the volume fraction of vegetable oil. Finally, in the case of sunflower oil + 20 cS PDMS, the study is extended to particles other than silica which differ in chemical type, particle size and particle shape. Consistent with the above findings, we find that only sufficiently hydrophobic particles (clay, zinc oxide, silicone, calcium carbonate) can act as efficient V/S emulsion stabilisers

    Particles at oil–air surfaces : powdered oil, liquid oil marbles, and oil foam

    Get PDF
    The type of material stabilized by four kinds of fluorinated particles (sericite and bentonite platelet clays and spherical zinc oxide) in air–oil mixtures has been investigated. It depends on the particle wettability and the degree of shear. Upon vigorous agitation, oil dispersions are formed in all the oils containing relatively large bentonite particles and in oils of relatively low surface tension (Îłla < 26 mN m⁻Âč) like dodecane, 20 cS silicone, and cyclomethicone containing the other fluorinated particles. Particle-stabilized oil foams were obtained in oils having Îłla > 26 mN m⁻Âč where the advancing air–oil–solid contact angle Ξ lies between ca. 90° and 120°. Gentle shaking, however, gives oil-in-air liquid marbles with all the oil–particle systems except for cases where Ξ is <60°. For oils of tension >24 mN m⁻Âč with omniphobic zinc oxide and sericite particles for which advancing Ξ ≄ 90°, dry oil powders consisting of oil drops in air which do not leak oil could be made upon gentle agitation up to a critical oil:particle ratio (COPR). Above the COPR, catastrophic phase inversion of the dry oil powders to air-in-oil foams was observed. When sheared on a substrate, the dry oil powders containing at least 60 wt % of oil release the encapsulated oil, making these materials attractive formulations in the cosmetic and food industries

    Whipped oil stabilised by surfactant crystals

    Get PDF
    We describe a protocol for preparing very stable air-in-oil foams starting with a one-phase oil solution of a fatty acid (myristic acid) in high oleic sunflower oil at high temperature. Upon cooling below the solubility limit, a two-phase mixture consisting of fatty acid crystals (length around 50 ÎŒm) dispersed in an oil solution at its solubility is formed which, after whipping, coat air bubbles in the foam. Foams which do not drain, coalesce or coarsen may be produced either by increasing the fatty acid concentration at fixed temperature or aerating the mixtures at different temperatures at constant concentration. We prove that molecular fatty acid is not surface-active as no foam is possible in the one-phase region. Once the two-phase region is reached, fatty acid crystals are shown to be surface-active enabling foam formation, and excess crystals serve to gel the continuous oil phase enhancing foam stability. A combination of rheology, X-ray diffraction and pulsed nuclear magnetic resonance is used to characterise the crystals and oil gels formed before aeration. The crystal-stabilised foams are temperature-sensitive, being rendered completely unstable on heating around the melting temperature of the crystals. The findings are extended to a range of vegetable oil foams stabilised by a combination of adsorbed crystals and gelling of the oil phase, which destabilise at different temperatures depending on the composition and type of fatty acid chains in the triglyceride molecules

    Dry oil powders and oil foams stabilised by fluorinated clay platelet particles

    Get PDF
    A series of platelet sericite particles coated to different extents with a fluorinating agent has been characterised and their behaviour in mixtures with air and oil studied. The material which forms by vigorous shaking depends on both the surface tension of the oil and the surface energy of the particles which control their degree of wetting. Oil dispersions are formed in liquids of relatively low tension (<22 mN m−1), e.g. hexane and cyclomethicone, for all particles. Particle-stabilised air-in-oil foams form in liquids of higher tension, e.g. dodecane and phenyl silicone, where the advancing three-phase contact angle ξ, measured on a planar substrate composed of the particles into the liquid, lies between ca. 65° and 120°. For oils of tension above 27 mN m−1 like squalane and liquid paraffin with particles for which ξ > 70°, we have discovered that dry oil powders in which oil drops stabilised by particles dispersed in air (oil-in-air) can be prepared by gentle mixing up to a critical oil : particle ratio (COPR) and do not leak oil. These powders, containing up to 80 wt% oil, release the encapsulated oil when sheared on a substrate. For many of the systems forming oil powders, stable liquid oil marbles can also be prepared. Above the COPR, catastrophic phase inversion occurs yielding an ultra-stable air-in-oil foam. We thus demonstrate the ability to disperse oil drops or air bubbles coated with particles within novel materials

    pH-responsive gas–water–solid interface for multiphase catalysis

    Get PDF
    © 2015 American Chemical Society. Despite their wide utility in laboratory synthesis and industrial fabrication, gas-water-solid multiphase catalysis reactions often suffer from low reaction efficiency because of the low solubility of gases in water. Using a surface-modification protocol, interface-active silica nanoparticles were synthesized. Such nanoparticles can assemble at the gas-water interface, stabilizing micrometer-sized gas bubbles in water, and disassemble by tuning of the aqueous phase pH. The ability to stabilize gas microbubbles can be finely tuned through variation of the surface-modification protocol. As proof of this concept, Pd and Au were deposited on these silica nanoparticles, leading to interface-active catalysts for aqueous hydrogenation and oxidation, respectively. With such catalysts, conventional gas-water-solid multiphase reactions can be transformed to H 2 or O 2 microbubble reaction systems. The resultant microbubble reaction systems exhibit significant catalysis efficiency enhancement effects compared with conventional multiphase reactions. The significant improvement is attributed to the pronounced increase in reaction interface area that allows for the direct contact of gas, water, and solid phases. At the end of reaction, the microbubbles can be removed from the reaction systems through changing the pH, allowing product separation and catalyst recycling. Interestingly, the alcohol oxidation activation energy for the microbubble systems is much lower than that for the conventional multiphase reaction, also indicating that the developed microbubble system may be a valuable platform to design innovative multiphase catalysis reactions

    Pickering emulsions responsive to CO₂/N₂ and light dual stimuli at ambient temperature

    Get PDF
    A dual stimulus-responsive n-octane-in-water Pickering emulsion with CO₂/N₂ and light triggers is prepared using negatively charged silica nanoparticles in combination with a trace amount of dual switchable surfactant, 4-butyl-4-(4-N,N-dimethylbutoxyamine) azobenzene bicarbonate (AZO-B₄) as stabilizers. On one hand, the emulsion can be transformed between stable and unstable at ambient temperature rapidly via the N₂/CO₂ trigger, and on the other hand a change in droplet size of the emulsion can occur upon light irradiation/re-homogenization cycles without changing the particle/surfactant concentration. The dual responsiveness thus allows for a precise control of emulsion properties. Compared with emulsions stabilised by specially synthesized stimuli-responsive particles or by stimuli-responsive surfactants, the method reported here is much easier and requires relatively low concentration of surfactant (≈1/10 cmc), which is important for potential applications

    Food-grade Pickering stabilisation of foams by in situ hydrophobisation of calcium carbonate particles

    Get PDF
    © 2016 Elsevier Ltd The aim of this study was to investigate the possibility of stabilising foam bubbles in water by adsorption of calcium carbonate (CaCO 3 ) particles. Because CaCO 3 is hydrophilic and not surface-active, particles were hydrophobised in situ with several emulsifiers. The used emulsifiers were food-grade and negatively charged at the pH employed. The effect of particle addition on foamability and foam stability of solutions containing either ÎČ-lactoglobulin, sodium caseinate, Quillaja, sodium dodecanoate (SD) or sodium stearoyl-2-lactylate (SSL) was studied. It was found that the ability of the emulsifiers to induce surface activity such that the particles are able to adsorb to the air-water interface is related to their structure. The structure needs to consist of a well-defined hydrophobic part and a charged part. Large emulsifiers with a complex structure, such as ÎČ-lactoglobulin, sodium caseinate and Quillaja, were able to partially hydrophobise the particles but were not able to act synergistically with the particles to increase the foam stability. Low molecular weight emulsifiers, however, consisting of a single tail with one charged group, such as SD and SSL, adsorbed at the particle surface rendering the particles partially hydrophobic such that they adsorb to the air-water interface. In a subsequent investigation, the pH was changed to a value typical for food products (pH 6–7) and the addition of milk salts on the foamability and foam stability was assessed. Based on these results, the use of food-grade CaCO 3 particles hydrophobised in situ with food-grade surfactants (SD or SSL) to prepare ultra-stable aqueous foams is demonstrated
    • 

    corecore