5,885 research outputs found

    Euler characteristics of moduli spaces of curves

    Get PDF
    Let Mgn be the moduli space of n-pointed Riemann surfaces of genus g. Denote by Mgn the Deligne-Mumford compactification of Mgn. In the present paper, we calculate the orbifold and the ordinary Euler characteristic of Mgn for any g and n such that n > 2-2g

    Geometric transport along circular orbits in stationary axisymmetric spacetimes

    Full text link
    Parallel transport along circular orbits in orthogonally transitive stationary axisymmetric spacetimes is described explicitly relative to Lie transport in terms of the electric and magnetic parts of the induced connection. The influence of both the gravitoelectromagnetic fields associated with the zero angular momentum observers and of the Frenet-Serret parameters of these orbits as a function of their angular velocity is seen on the behavior of parallel transport through its representation as a parameter-dependent Lorentz transformation between these two inner-product preserving transports which is generated by the induced connection. This extends the analysis of parallel transport in the equatorial plane of the Kerr spacetime to the entire spacetime outside the black hole horizon, and helps give an intuitive picture of how competing "central attraction forces" and centripetal accelerations contribute with gravitomagnetic effects to explain the behavior of the 4-acceleration of circular orbits in that spacetime.Comment: 33 pages ijmpd latex article with 24 eps figure

    Kerr metric, static observers and Fermi coordinates

    Full text link
    The coordinate transformation which maps the Kerr metric written in standard Boyer-Lindquist coordinates to its corresponding form adapted to the natural local coordinates of an observer at rest at a fixed position in the equatorial plane, i.e., Fermi coordinates for the neighborhood of a static observer world line, is derived and discussed in a way which extends to any uniformly circularly orbiting observer there.Comment: 15 page latex iopart class documen

    Circular holonomy in the Taub-NUT spacetime

    Full text link
    Parallel transport around closed circular orbits in the equatorial plane of the Taub-NUT spacetime is analyzed to reveal the effect of the gravitomagnetic monopole parameter on circular holonomy transformations. Investigating the boost/rotation decomposition of the connection 1-form matrix evaluated along these orbits, one finds a situation that reflects the behavior of the general orthogonally transitive stationary axisymmetric case and indeed along Killing trajectories in general.Comment: 9 pages, LaTeX iopart class, no figure

    Teukolsky Master Equation: De Rham wave equation for the gravitational and electromagnetic fields in vacuum

    Get PDF
    A new version of the Teukolksy Master Equation, describing any massless field of different spin s=1/2,1,3/2,2s=1/2,1,3/2,2 in the Kerr black hole, is presented here in the form of a wave equation containing additional curvature terms. These results suggest a relation between curvature perturbation theory in general relativity and the exact wave equations satisfied by the Weyl and the Maxwell tensors, known in the literature as the de Rham-Lichnerowicz Laplacian equations. We discuss these Laplacians both in the Newman-Penrose formalism and in the Geroch-Held-Penrose variant for an arbitrary vacuum spacetime. Perturbative expansion of these wave equations results in a recursive scheme valid for higher orders. This approach, apart from the obvious implications for the gravitational and electromagnetic wave propagation on a curved spacetime, explains and extends the results in the literature for perturbative analysis by clarifying their true origins in the exact theory.Comment: 30 pages. No figures. Used PTP macros. To appear on Prog. Theor. Phys., Vol. 107, No. 5, May 200

    Towards a closed differential aging formula in special relativity

    Get PDF
    It is well known that the Lorentzian length of a timelike curve in Minkowski spacetime is smaller than the Lorentzian length of the geodesic connecting its initial and final endpoints. The difference is known as the 'differential aging' and its calculation in terms of the proper acceleration history of the timelike curve would provide an important tool for the autonomous spacetime navigation of non-inertial observers. I give a solution in 3+1 dimensions which holds whenever the acceleration is decomposed with respect to a lightlike transported frame (lightlike transport will be defined), the analogous and more natural problem for a Fermi-Walker decomposition being still open.Comment: Latex2e, 6 pages, 1 figure, uses psfrag. Contribution to the Proceedings of The Spanish Relativity Meeting (ERE 2006), Palma de Mallorca, Spain September 4-8, 200

    Spinning particles in Schwarzschild-de Sitter space-time

    Full text link
    After considering the reference case of the motion of spinning test bodies in the equatorial plane of the Schwarzschild space-time, we generalize the results to the case of the motion of a spinning particle in the equatorial plane of the Schwarzschild-de Sitter space-time. Specifically, we obtain the loci of turning points of the particle in this plane. We show that the cosmological constant affect the particle motion when the particle distance from the black hole is of the order of the inverse square root of the cosmological constant.Comment: 8 pages, 5 eps figures, submitted to Gen.Rel.Gra

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime

    Get PDF
    We study the motion of test particles and electromagnetic waves in the Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects associated with the gravitomagnetic monopole moment of the source. In particular, we determine in the linear approximation the contribution of this monopole to the gravitational time delay and the rotation of the plane of the polarization of electromagnetic waves. Moreover, we consider "spherical" orbits of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the modification of the Wilkins orbits due to the presence of the gravitomagnetic monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur

    Stability of circular orbits of spinning particles in Schwarzschild-like space-times

    Full text link
    Circular orbits of spinning test particles and their stability in Schwarzschild-like backgrounds are investigated. For these space-times the equations of motion admit solutions representing circular orbits with particles spins being constant and normal to the plane of orbits. For the de Sitter background the orbits are always stable with particle velocity and momentum being co-linear along them. The world-line deviation equations for particles of the same spin-to-mass ratios are solved and the resulting deviation vectors are used to study the stability of orbits. It is shown that the orbits are stable against radial perturbations. The general criterion for stability against normal perturbations is obtained. Explicit calculations are performed in the case of the Schwarzschild space-time leading to the conclusion that the orbits are stable.Comment: eps figures, submitted to General Relativity and Gravitatio
    • …
    corecore