5,569 research outputs found

    Kerr metric, static observers and Fermi coordinates

    Full text link
    The coordinate transformation which maps the Kerr metric written in standard Boyer-Lindquist coordinates to its corresponding form adapted to the natural local coordinates of an observer at rest at a fixed position in the equatorial plane, i.e., Fermi coordinates for the neighborhood of a static observer world line, is derived and discussed in a way which extends to any uniformly circularly orbiting observer there.Comment: 15 page latex iopart class documen

    Spinning test particles and clock effect in Kerr spacetime

    Full text link
    We study the motion of spinning test particles in Kerr spacetime using the Mathisson-Papapetrou equations; we impose different supplementary conditions among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze their physical implications in order to decide which is the most natural to use. We find that if the particle's center of mass world line, namely the one chosen for the multipole reduction, is a spatially circular orbit (sustained by the tidal forces due to the spin) then the generalized momentum PP of the test particle is also tangent to a spatially circular orbit intersecting the center of mass line at a point. There exists one such orbit for each point of the center of mass line where they intersect; although fictitious, these orbits are essential to define the properties of the spinning particle along its physical motion. In the small spin limit, the particle's orbit is almost a geodesic and the difference of its angular velocity with respect to the geodesic value can be of arbitrary sign, corresponding to the spin-up and spin-down possible alignment along the z-axis. We also find that the choice of the supplementary conditions leads to clock effects of substantially different magnitude. In fact, for co-rotating and counter-rotating particles having the same spin magnitude and orientation, the gravitomagnetic clock effect induced by the background metric can be magnified or inhibited and even suppressed by the contribution of the individual particle's spin. Quite surprisingly this contribution can be itself made vanishing leading to a clock effect undistiguishable from that of non spinning particles. The results of our analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum Gravity, 200

    Towards a closed differential aging formula in special relativity

    Get PDF
    It is well known that the Lorentzian length of a timelike curve in Minkowski spacetime is smaller than the Lorentzian length of the geodesic connecting its initial and final endpoints. The difference is known as the 'differential aging' and its calculation in terms of the proper acceleration history of the timelike curve would provide an important tool for the autonomous spacetime navigation of non-inertial observers. I give a solution in 3+1 dimensions which holds whenever the acceleration is decomposed with respect to a lightlike transported frame (lightlike transport will be defined), the analogous and more natural problem for a Fermi-Walker decomposition being still open.Comment: Latex2e, 6 pages, 1 figure, uses psfrag. Contribution to the Proceedings of The Spanish Relativity Meeting (ERE 2006), Palma de Mallorca, Spain September 4-8, 200

    Optimal Two-Level Speed Assignment for Real-Time Systems

    Get PDF
    Reducing energy consumption is one of the main concerns in the design and implementation of embedded real-time systems. For this reason, the current generation of processors allows to vary voltage and operating frequency to balance computational speed and energy consumption. This technique is called dynamic voltage scaling (DVS). When applying DVS tohard real-time systems, it is important to provide the worst-case computational requirement; otherwise the timing constraints may be violated. However, the probability of a task executing for its worst-case execution time is very low. In this paper,we show how to exploit probabilistic information about the execution time of a task in order to reduce the energy consumed by the processor. Optimal speed assignments and transition points are found using a very general model for the processor. The model accounts for the processor idle power and time/energy overheads due to frequency transitions. We also show how these results apply to some significant cases

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    The space of EDF deadlines: the exact region and a convex approximation

    Get PDF

    Spin precession in the Schwarzschild spacetime: circular orbits

    Full text link
    We study the behavior of nonzero rest mass spinning test particles moving along circular orbits in the Schwarzschild spacetime in the case in which the components of the spin tensor are allowed to vary along the orbit, generalizing some previous work.Comment: To appear on Classical and Quantum Gravity, 200

    Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime

    Get PDF
    We study the motion of test particles and electromagnetic waves in the Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects associated with the gravitomagnetic monopole moment of the source. In particular, we determine in the linear approximation the contribution of this monopole to the gravitational time delay and the rotation of the plane of the polarization of electromagnetic waves. Moreover, we consider "spherical" orbits of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the modification of the Wilkins orbits due to the presence of the gravitomagnetic monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur

    A hierarchical scheduling model for component-based real-time systems

    Get PDF
    In this paper, we propose a methodology for developing component-based real-time systems based on the concept of hierarchical scheduling. Recently, much work has been devoted to the schedulability analysis of hierarchical scheduling systems, in which real-time tasks are grouped into components, and it is possible to specify a different scheduling policy for each component. Until now, only independent components have been considered. In this paper, we extend this model to tasks that interact through remote procedure calls. We introduce the concept of abstract computing platform on which each component is executed. Then, we transform the system specification into a set of real-time transactions and present a schedulability analysis algorithm. Our analysis is a generalization of the holistic analysis to the case of abstract computing platforms. We demonstrate the use of our methodology on a simple example
    • …
    corecore