
Int. J. Embedded Systems, Vol. 4, No. 2, 2009 101

Copyright © 2009 Inderscience Enterprises Ltd.

Optimal two-level speed assignment for real-time
systems

Enrico Bini*
Scuola Superiore Sant’Anna
Via G. Moruzzi 1, 56124, Pisa, Italy
E-mail: e.bini@sssup.it
*Corresponding author

Claudio Scordino
Evidence Srl,
Via Carducci 64/A, 56010 Pisa, Italy
E-mail: claudio@evidence.eu.com

Abstract: Reducing energy consumption is one of the main concerns in the design and
implementation of embedded real-time systems. For this reason, the current generation of
processors allows to vary voltage and operating frequency to balance computational speed and
energy consumption. This technique is called dynamic voltage scaling (DVS).
 When applying DVS to hard real-time systems, it is important to provide the worst-case
computational requirement; otherwise the timing constraints may be violated. However, the
probability of a task executing for its worst-case execution time is very low.
 In this paper, we show how to exploit probabilistic information about the execution time
of a task in order to reduce the energy consumed by the processor. Optimal speed assignments
and transition points are found using a very general model for the processor. The model accounts
for the processor idle power and time/energy overheads due to frequency transitions. We also
show how these results apply to some significant cases.

Keywords: dynamic voltage scaling; DVS; real-time; power-aware computing; probabilistic
execution time.

Reference to this paper should be made as follows: Bini, E. and Scordino, C. (2009) ‘Optimal
two-level speed assignment for real-time systems’, Int. J. Embedded Systems, Vol. 4, No. 2,
pp.101–111.

Biographical notes: Enrico Bini is an Assistant Professor at the Scuola Superiore Sant’Anna,
Pisa, Italy. He completed his PhD at the same institution in 2004. His interests include real-time
scheduling, control systems and optimisation methods.

Claudio Scordino is a PhD student and a Teaching Assistant at the University of Pisa
collaborating with Scuola Superiore Sant’Anna. His research activities include operating systems,
real-time scheduling, energy saving and embedded devices.

1 Introduction

The number of embedded systems operated by batteries is
increasing in different application domains, from personal
digital assistants (PDAs) to autonomous robots, smart
phones and sensor networks. Reducing the energy
consumed by these systems has become a key design issue,
as they can only operate on the limited battery supply.
Battery lifetime is a critical design parameter, and it affects
directly the size and the weight of the system.

In recent years, the problem of energy reduction arose in
the real-time servers’ area as well (Rusu et al., 2006). As
processors become more and more powerful, their energy
consumption increases correspondingly, and it becomes a
problem to dissipate the heat produced (Lefurgy et al., 2003;

Bianchini and Rajamony, 2004). In fact, the increase of the
computational power in current digital systems is mostly
obtained by increasing the clock frequency, leading to a
higher energy demand (Pouwelse et al., 2001; Ishihara and
Yasuura, 1998; Lorch and Smith, 2001; Rusu et al., 2006)
and a greater heat generated. Conventional computers are
currently air-cooled, and manufacturers are facing the
problem of building powerful systems without introducing
additional techniques such as liquid cooling (Lefurgy et al.,
2003). Not surprisingly, a significant portion of the
consumed energy is due to cooling devices, which may
consume up to 50% of the total energy (Lefurgy et al.,
2003). For example, a 10 kW rack consumes about
10 MWh a month (including cooling), which represents at
least 10% of the operation cost (Barroso et al., 2003), with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54929365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

102 E. Bini and C. Scordino

this trend likely to increase in the future. Reducing the
energy consumed by the computing components would
impact on the energy consumed by the cooling devices and,
eventually, on the cost of the system.

To prolong the lifetime of all these systems, the energy
consumption should be reduced to an absolute minimum
through energy-aware techniques. For this reason, the
current generation of processors (Intel Corp., 2004a, 2004b;
MPC5200; Crusoe, 2003; Intel Centrino) allow the
operating system to vary dynamically the operating
frequency to balance computational speed versus energy
consumption. This technique is called dynamic voltage
scaling (DVS), and it is used by many energy-aware
scheduling policies (Scordino and Lipari, 2004; Pillai and
Shin, 2001; Aydin et al., 2004; Qadi et al., 2003; Zhu and
Mueller, 2004). However, a weakness of most approaches is
due to the set of assumptions, often not realistic, which are
made to simplify the solution. Besides ignoring the energy
consumed by the processor when it is idle, these methods
often neglect also the delay due to a frequency transition,
preventing thus the application of research results to real-
world systems. In some approaches (Lee and Sakurai, 2000;
Mochocki et al., 2002), such a delay has been considered in
the processor model, but only dynamic techniques aimed at
reducing the slack time have been developed. For this
reason, we have formulated a general model for the
processor (Bini et al., 2005; Scordino and Bini, 2005),
which takes into account both time and energy overheads
due to frequency transition.

In real-time systems, any energy-aware policy acting on
the processor speed must take timing constraints into
account, to guarantee the timely execution of the
computational activities. For safety reasons, hard real-time
systems are typically designed to handle peak loads.
However, peak load conditions rarely happen in practice,
and the system resources are underutilised most of the time.
For example, server loads often vary significantly
depending on the time of the day or other external factors.
Researchers at IBM showed that the average processor
utilisation of real servers is between 10% and 50% of their
peak capacity (Bohrer et al., 2002). Thus, much of the
server capacity remains unused during normal operations
(Rusu et al., 2006). These issues are even more critical in
embedded systems (Xu et al., 2005), where the peak power
has an important impact on the size and the cost of the
system. Some studies have observed (Wegener and Mueller,
2001) that the actual execution times of tasks in real-world
embedded systems can vary up to 80% with respect to their
measured worst case execution cycles (WCECs). This
suggests that a striking energy reduction can be achieved by
enriching DVS policies with more detailed information on
the required workload.

Recently, the discipline of probabilistic timing analysis
has significantly advanced (Burns et al., 2003; Ermedahl et
al., 2003), and today there exist tools that can provide the
probability density function (PDF) of task’s execution times
(Bernat et al., 2003). Basically, these tools partition the task
code into basic blocks, which are sequential instructions

between two consecutive conditional branches. The duration
of each block depends on the processor status (e.g., caches,
pipeline stages, out-of-order execution, etc.) and it can be
modelled by a random variable. The PDF of the whole task
can be extracted by combining the information of every
block. This information can then be exploited to reduce the
energy consumption. Lorch and Smith (2001) proposed the
processor acceleration to conserve energy (PACE) model
that increases speed as the task progresses in continuous
speed processors. However, the model is not general: it
considers only a well-defined power function (i.e., energy
per cycle proportional to the speed square) and it does not
account for the overhead during frequency transition.
Xu et al. (2004) extended the model to the case of discrete
speeds and general power functions. Furthermore, they took
into account idle power and speed change overhead.
However, none of the above papers dealt with optimal speed
transition instants, and it is not clear how an optimal
sequence of transition points can be found. In the original
paper, the authors proposed a heuristic to select a ‘good’
sequence of transition points, but only justified it under the
condition of continuous speed (Lorch and Smith, 2001). In
the second paper, the problem of optimal transition points is
said to be ‘still an open problem beyond the scope of the
paper’ (Xu et al., 2004). An attempt to consider stochastic
information in energy reduction problems has been made
also by Gruian (2002). However, that study addresses the
case with no transition overheads and with a specific power
function, as well.

In this paper, we integrate the concept of probabilistic
execution time within the framework of energy
minimisation, providing the basis of a new challenging
approach. We show how probabilistic information about
task execution times can be exploited to reduce the energy
consumed by the processor without violating the timing
constraints. Optimal speed assignments and transition points
are found using a very general model that accounts for
processor idle power and time/energy overheads due to
frequency transitions. We also show how these results can
be applied to some significant examples.

2 Energy management scheme

We focus on the problem of reducing the energy consumed
by a task τ on a variable speed processor. Some existing
energy-aware algorithms (Zhu and Mueller, 2004; Lorch
and Smith, 2001; Xu et al., 2004) have been developed
starting from this simple scheme, since it constitutes a good
starting point for more complex analysis.

In our model, the task τ has a period and a deadline
both equal to .T The number of processor cycles required
by the task is modelled by a random variable whose PDF is

().C cƒ The maximum possible number of cycles needed by
τ is max .C Since τ is a hard real-time task, maxC cycles
must be available in [0,]T in any case.

If the number of required cycles in [0,]T is known in
advance, it has been shown (Ishihara and Yasuura, 1998;

 Optimal two-level speed assignment for real-time systems 103

Pouwelse et al., 2001) that using a constant speed during
task execution minimises the energy consumed assuming a
continuous speed processor. In fact, the convexity of the
power/speed curve implies that maintaining a constant
speed α is better than switching between two different
speeds. When the processor offers a limited set of speeds,
using the two speeds which are the closest to the optimal
(ideal) speed minimises the energy consumption (Ishihara
and Yasuura, 1998).

In our scheme, it is not possible to compute the optimal
constant speed α because the actual number of cycles
required by the current instance of τ is not known in
advance. In this case, a common technique (Aydin et al.,
2004; Zhu and Mueller, 2004; Pillai and Shin, 2001; Lorch
and Smith, 2001; Xu et al., 2004) is based upon the idea of
deferring some work, expecting that the current instance of
τ will request much less than its WCEC max .C This
technique typically splits the task execution into two parts,
as shown in Figure 1. In the first part, the processor runs at a
lower speed Lα to reduce the energy consumed in the
average case. In the second part, instead, the processor runs
at a higher speed Hα in order to provide up to maxC cycles
even in the worst case. The idea is that, if a task tends to use
much less than its WCEC, the second part, which consumes
more energy, may never be needed.

Figure 1 The energy management scheme

The idea of deferring work has been widely used in the
literature to create several energy-aware algorithms. For
instance, Pillai and Shin (2001) proposed the RTDVS-look
ahead algorithm, which defers as much work as possible,
setting the processor frequency to the minimum value which
ensures that all future deadlines will be met. This technique
has also been used by Aydin et al. (2004) in the ‘aggressive’
version of the DRA algorithm. This algorithm speculatively
assumes that current and future instances of the task will
most probably present a computational demand lower than
the worst case. Hence, it tries to reduce the speed of the
running task by deferring all the work above a certain
threshold, set according to the average workload. A similar
approach has been applied to EDF by Zhu and Mueller
(2004): each task’s instance is divided into two portions and
the goal is to provide the average number of cycles avgC

within the first portion. All these techniques follow intuitive

ideas [such as providing the average execution cycles in the
first part (Zhu and Mueller, 2004)] to simplify the solution,
and do not study analytically the problem of finding optimal
values for speed assignments and transition instants.

2.1 Processor model

In CMOS circuits, the energy spent in dynamic switching
dominates the energy consumed by leakage currents, and
the dynamic portion of energy consumption is modelled by
well-known polynomial formulas (Chandrakasan and
Brodersen, 1995; Hong et al., 1998). However, as the
integration technology advances, it is expected that the
leakage will significantly affect, if not dominate, the overall
energy consumption in integrated circuits (ICs) (for
semiconductors; Rabaey et al., 2002; Gruian, 2002). Very
recently, some work addressed the issue of scheduling a
real-time application while reducing the leakage power as
well (Quan et al., 2004). Also, an important fraction of the
consumed energy depends on the memory. It has been
shown (Pouwelse et al., 2001) that at low frequencies, the
energy consumption is dominated by the memory, whereas
at high frequencies it is dominated by the processor core.

All these remarks have led us to formulate a general
model for the processor energy consumption. The processor
is characterised by a set 1 2 3{ , , ,...}= Λ Λ ΛM of operating
modes.

Each mode (), , ,Λ =k k k k kp o eα is described by four
parameters:

kα is the processor speed in mode Λk and it is measured
as number of cycles per second

kp is the power consumed in mode Λk when running at
speed ,kα measured in watts

ko is the time overhead needed to enter mode Λk and it is
expressed in seconds

ke is the energy overhead involved in the transition to the
mode ,Λk expressed in Joule.

For the sake of simplicity, we assume that ko and ke
depend only on mode Λk and neither on the mode the
processor was operating before, nor the processor status.
Also, we consider only efficient speeds meaning that:

, .∀Λ Λ ≤ ≤ ji
i j i j

i j

pp
α α

α α
⇒ (1)

In fact, if this condition is not true for some Λi and ,Λ j
then the mode Λ j would be always more convenient than
the mode .Λi DVS architectures may also have inefficient
operating frequencies, that can be easily removed from the
set of available frequencies (Saewong and Rajkumar, 2003;
PARTS).

Notice that this model is very general, since it is suitable
for both continuous and discrete speed processors. If the

104 E. Bini and C. Scordino

processor can vary its speed continuously, then the set M
is composed by infinite modes; on the other hand, if the
processor has only discrete operating modes then the set M
will be finite.

Finally, we suppose that the processor has one idle
operating mode denoted by .ΛI The processor enters idle
mode ΛI when all the computation required by the task is
completed. When running in idle mode, the processor does
not provide any useful computation (i.e., 0).=Iα Notice
that existing processors have several idle modes presenting
different features. Taking into account only one idle mode

,ΛI however, constitutes a good starting point for
considering more complex processors.

3 Optimal speed assignment

A speed assignment is optimal when it minimises the
average energy consumed. Given the PDF of the task
computation time (),C cƒ the expectation of the energy

consumption avgE can be computed as () () d ,
∞

∞

+

−∫ CE c c cƒ

where ()E c denotes the energy consumed when the task
executes for c cycles. The optimal values of the parameters
occur where the partial derivatives of avgE are equal to
zero.

3.1 Average energy consumption

We now compute the average energy consumption based on
the probabilistic information of the task execution time. The
optimal values for speed assignments and transition instants
will be computed in Section 3.2 based on this result.

The energy consumed by the processor can be split into
two separate components: the active energy ,AE consumed
when executing the task ,τ and the idle energy ,IE
consumed when the task has terminated and the processor
has entered mode .ΛI Since these two terms must be
added, they can be considered separately. First, let us
compute the value of the active energy.

Let Lα and Hα be the lower and the higher processor
speeds respectively. The period of the scheme is .Τ The
number of processor cycles required by the task τ in each
period is modelled by a random variable whose PDF is

()Cf c and the maximum number of cycles is max .C This
amount of cycles must be guaranteed in each period because
the task is subject to a hard real-time constraint. Our goal is
to find the optimal values for the two speed levels Lα and

Hα and the instant Q when the transition should occur.
Let xC be the number of cycles provided while running

at ,Lα as shown in Figure 1. Let c be the actual number of
cycles required by the current instance of τ and f the
finishing time of the task. We distinguish two different
cases:

1 if ,≤ xc C then the task terminates before the speed
switch, and we expect ≤Qƒ

2 otherwise, if > ,xc C then we need to run at speed Hα
to provide the required cycles and we expect

> .+ HQ oƒ

We consider the two cases separately.
In the first case (),≤ xc C the finishing time is

= +L
L

c
oƒ

α
 (2)

and the active energy consumed in one period T is

() .= + − = + L
A L L L L

L

p
E e p o e cƒ

α
 (3)

On the other hand, when max< ,≤xC c C we have

−
= + + x

H
H

c C
Q oƒ

α
 (4)

and the energy consumption is

().= + + + −L H
A L x H x

L H

p p
E e C e c C

α α
 (5)

The energy consumption as function of the number of
cycles c is shown in Figure 2. Notice that due to the

assumption of equation (1), the slope H

H

p

α
 is greater than

.L
L

p

α

Figure 2 The active energy AE vs. c

Equations (3) and (5) provide the active energy AE
consumed when the number of cycles is .c Since the
number of cycles is a random variable with PDF (),C cƒ
then the energy consumed is a random variable as well. The
expectation avg

AE of the random variable AE is

 Optimal two-level speed assignment for real-time systems 105

() ()

()()

() ()()()

maxavg

0

avg

d d

 = 1

 1

= +

+ − +

⎛ ⎞
− − + −⎜ ⎟
⎝ ⎠

∫ ∫
x

x

C C

A C A CA
C

H
L H C x

H

H L
C x x C x

H L

E E c c E c c

p
e e F C C

p p
G C C F C

ƒ ƒ

α

α α

where we set

() () () ()
0 0

d d .= =∫ ∫
x x

C C C CF x c c G x c c cƒ ƒ

For compactness, if we also set

() () ()()1 ,= + −C Cx G x x F xγ (6)

the average active energy avg
AE consumed in a period can

be written as

()() ()

()()

avg

avg

1

= + − +

+ −

L
L H C x xA

H
x

H

p
E e e F C C

L
p
C C

γ
α

γ
α

 (7)

Notice that ()maxCG C is equal to avgC by definition. For

this reason, we always have () avg0 ≤ ≤x Cγ for all .x

Accounting for the idle power

Equation (7) takes only into account the energy consumed
when the processor is running the task. We now evaluate the
contribution IE to the energy consumed by the processor
after the task has terminated. This contribution is

()= + − −I I I IE e p T f o

where Ie and Io are respectively the overheads of energy
and time to enter the idle mode and ƒ is the finishing time
of the task.

From the previous equations (2) and (4), which
established the relationship between the required number of
cycles and the finishing time ƒ we can express IE as a
function of the number of cycles .c Hence, we have

if

if >

≤⎧ ⎛ ⎞
+ − − −⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞−⎪ + − − − − −⎜ ⎟⎪ ⎝ ⎠⎩

x
I I L I

L
I

xx x
I I L H I

L H

c Cc
e p T o o

E
c CC c C

e p T o o o

α

α α

 (8)

As done for the active power consumption, we calculate
similarly the average consumption of idle energy by
integrating equation (8) over the PDF ()C cƒ of the number
of cycles.

()

()

(()()

()

max

avg

0

avg

d

 d

 = 1

1 1

⎛
= + − − −⎜

⎝
⎞⎛ ⎞−

− + + ⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

+ − − − −

⎞⎛ ⎞
− − − ⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

∫

∫

x

x

C

I I L I CI
L

C
x x

H C
C L H

I I L I H C x

x
H L H

c
E e p T o o f c c

C c C
o f c c

e p T o o o F C

C
C

α

α α

γ
α α α

where we used the definition of ()xγ given in equation (6).
We can write it in a more compact form as

(()()
() ()

avg

avg

1

= + − − − −

− ⎞
− − ⎟⎟

⎠

I I L I C xI H

x x

H L

E e p T o o o F C

C C Cγ γ
α α

 (9)

Finally, if we add equations (7) and (9), we find that

()
() ()()

() ()()

avg

avg

 1

 +

= + + − −

+ − −

− −
+ −

L I I L II

H I H C x

L I H I
x x

L H

E e e p T o o

e p o F C

p p p p
C C Cγ γ

α α

 (10)

Equation (10), which extends equation (7) to the case of idle
power, is a new result in the literature. It expresses the
average energy consumption as function of the probability
density of the task execution cycles, while taking also into
account the idle power and the overheads.

Now an essential remark is in order. Equation (10) can
be obtained from equation (7) by the following substitution

()= + + − − = −
= − = −

L L I I L I H H I H

L L I H H I

e e e p T o o e e p o

p p p p p p

Hence, we can say that the ‘idle power can be taken into
account by a simple adjustment of the operating modes’. For
this reason, unless specified differently, in the rest of the
paper, we will consider only equation (7).

3.2 Minimum energy consumption

Equation (7) is valid for processors with discrete as well as
continuous operating modes. Taking into account discrete
operating modes requires the evaluation of the energy
consumed by all the mode pairs. The problem then becomes
to find the optimal pair with the lowest total energy
consumption. The complexity of this evaluation process is

2(),O m where m is the number of available efficient
operating modes.

For processors with continuous operating modes,
instead, it is possible to analytically find the optimal values
for speed assignments and transition instant. Many
significant contributions in the literature (Aydin et al., 2004;
Pillai and Shin, 2001; Zhu and Mueller, 2004; Scordino and
Lipari, 2004) still assume a continuous speed because if the
processor speed levels are very close to each other, then this

106 E. Bini and C. Scordino

approximation is very close to reality. Obviously, if the
optimal speed is not available, it has to be approximated
with the closest discrete speed higher than the optimal one.
In this case, there is an increase of energy consumption,
called energy quantisation error, which was studied by
Saewong and Rajkumar (2003).

In the continuous model, we assume that:

• all operating modes Λk require the same time overhead
o and energy overhead .e Formally, we have that

, 0∀ = =k kk e e o

• the speed α varies within []max0, ,α where maxα is
the maximum speed allowed by the processor

• the power consumption at speed α is modelled by the
function ().p α Typically, the power function ()p α is a
polynomial (Chandrakasan and Brodersen, 1995).
However, as stated earlier, it is expected that the
power/speed relationship may differ from the ideal
polynomial function (Gruian, 2002). For this reason, we
model this relationship by a generic function ().p α

Different from the case of discrete operating modes, in the
case of continuous operating modes, we can find the
conditions for minimum energy consumption (i.e., optimal
transition instant and speed levels) starting from
equation (7).

The speeds (),L Hα α can be expressed as function of

xC and ,Q as follows:

max .
−

= =
− − −

xx
L H

C CC

Q o T Q o
α α (11)

These equalities follow directly from the adopted energy
management scheme as shown in Figure 1. In the remainder
of the paper, we will develop the energy management
scheme using xC and Q as our free variables.

Figure 3 Level curves of avgE for exponential PDF with
avg 0.2929C = (see online version for colours)

It is very insightful to plot the quantity avgE on a plane
(,).xC Q Figure 3 shows the level curves of the quantity

avgE as function of xC and of .Q In the plot, we assumed
an exponential PDF with average value avg 0.2929,C = a

period T equal to 1 and a power function 3() .=p kα α The
minimum occurs at the centre of the white region for a value
of xC greater than avg .C

The minimum of equation (7) can be found analytically
by calculating the partial derivatives of avgE with respect to

the variables xC and .Q Let ()d
dH H
p

p′ = α
α

 and

()d .
dL L
p

p′ = α
α

 We have:

()
()

() () ()

avg
avg

max

−⎛ ⎞
′= − − −⎜ ⎟ −⎝ ⎠
⎛ ⎞

′ ′ ′− + − +⎜ ⎟
⎝ ⎠

xH
C x H

x H x

xH L L
x L x

H L x L

C CpE
e C p

C C C

Cp p p
C p C

C

γ∂
ƒ

∂ α

γ
γ γ

α α α

 (12)

where we used the property that, from equation (11), it
follows:

max max

1 1

1

′
′ = = = =

−

′
′ = = − = −

− −

L L L
L

x x L x

H H H
H

x x H x

C Q o C C

C C C C C

∂α α α
α

∂ α

∂α α α
α

∂ α

 ⇒

⇒

An equivalent property can also be found for the
differentiation with respect to .Q In fact, we have

2

2 2

2

2
max max

1– –

1

′
= − = =

′
= =

− −

L x L L

x xL

H H H

x xH

C

Q C CQ

Q C C C C

∂α α α
∂ α

∂α α α
∂ α

⇒

 ⇒

 (13)

Now we complete the analysis of the function avgE by

computing
avg

,E
Q

∂
∂

 which can be greatly simplified, thanks

to the property of equation (13). Notice that, differently than
in equation (12), in the next equation L

′α and H
′α denote

respectively L

Q

∂α
∂

 and .H
Q

∂α
∂

()
()

() ()

avg
avg

max

−
′= −

−

′− −

x
H H H

x

x
L L L

x

C CE
p p

Q C C

C
p p

C

γ∂
α

∂

γ
α

 (14)

Equations (12) and (14) are the components of the gradient
avg .E∇ From functional analysis, we know that the

minimum satisfies the condition avg 0.E =∇ Once the

 Optimal two-level speed assignment for real-time systems 107

optimal (,)xC Q is found, then the constraint maxH ≤α α
must be checked. In fact, if it is violated, it means that the
global minimum would result in a too high value of .Hα It
this case, we know from the Kuhn-Tucker conditions that
the minimum occurs when max ,H =α α which means that

()
max max

max
max max2

−
= ⇒ =

− − − − +
x x

L
x

C C C

T Q o T o C C

α
α α

α
 (15)

From equation (7), replacing Hα with maxα and Lα with

the expression of equation (15), we find avgE as function of
the unique variable .xC The minimal energy solution is
found by applying classical techniques of functional
analysis of one-variable functions.

4 Examples

After the main equations for the general case are found, we
show how they can be applied to find the optimal (,)xC Q
in some common cases.

When considering continuous speed levels, a common
assumption are that the relationship between the power
consumption p and speed α is

() np k=α α

for some , .k n The typical value of n is 3. However, we
keep the general form as long as the math is tractable. In
this hypothesis, the gradient can be simplified as follows:

() ()
()

() () () ()

()
() ()

avg
avg

max

1 1

avg
avg

max

1

 1

1

− −

⎧ ⎛ −⎛
⎪ = − − −⎜⎜⎜⎜ −⎪ ⎝⎝
⎪

⎞⎛ ⎞⎪
′ ′+ − − + ⎟⎜ ⎟⎨ ⎟⎝ ⎠⎪ ⎠

⎪ −⎛ ⎞⎪ = − −⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎩

x
C x

x x

xn n
x H x L

x

x xn n
H L

x x

C CE
e C k n

C C C

C
C n C

C

C C CE
k n

Q C C C

γ∂
ƒ

∂

γ
γ α γ α

γ γ∂
α α

∂

In order to find the conditions of minimum energy, we have
to set both the gradient components equal to zero. The math
is greatly simplified by assuming no overhead (0=e and

0).=o If we do so, by setting avg 0,E =∇ we finally find

that the pair (,)xC Q minimising the average energy avgE
must satisfy equation (16).

() () ()() ()
() ()() () ()

()

avgmax

avg max

1
avgmax

1 1 1

1

 1

1 1 1
−

⎧ ⎛ ⎞⎛ ⎞
′− + − −⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠

⎪ ′− − + −⎪
⎪⎪ = −⎨
⎪
⎪ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ − − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪
⎪⎩

x x x
x x

x x x

n n

x x

CC
n C C C

C C

n C C C C C

T
Q

CC T
C C Q

γ γ
γ

γ γ

γ

 (16)

Due to lack of space, we do not include all the calculations.
Because of their importance, we call equation (16) the
minimum stochastic energy equations. Once we know n
and the probability density (),C cƒ equation (16) can be
solved to obtain the pair (,)xC Q that minimises the energy
consumption.

4.1 Uniform density

Let us now assume a uniform density between minC and

max .C This means that

() min max
max min

1 if

0 otherwise

⎧ ≤ ≤⎪ −= ⎨
⎪
⎩

C

C c C
C Ccƒ

and also, when min max ,C c C≤ ≤

() () ()
2 2

min min

max min max min
.

2
− −

= =
− −C C

c C c C
F c G c

C C C C

The function (),cγ defined in equation (6) and its derivative
are

() () ()
2 2

max min max

max min max min

2
2

− + − −
′= =

− −
c cC C C c

c c
C C C C

γ γ

In this case, the minimum energy can be simply found by
properly substituting ()xCγ and ()′ xCγ in the minimum
stochastic energy equation (16). To simplify and compact
them, it is very convenient to normalise the cycles xC and

minC with respect to max .C Hence, we set
max

xCx
C

= and

min

max
.=

C
a
C

When 2,n = after a long algebraic manipulation, we
find that the minimum point is the solution of the
polynomial

()2 2 2 2 43 2 0x a x a x a− + + + =

Since the admissible solution x must be within [,1],a due
to the fact that min max ,xC C C≤ ≤ we find that the only
admissible solution is

2

opt
1 1 3 .

3
a

x
+ +

= (17)

In the same way, if we assume a more realistic power
function with 3,n = the polynomial to be solved becomes

() ()
()

5 2 4 2 3

2 4 2 4 6

4 10 4 5 12

5 2 0

− + + +

− + − + =

x a x a x

a a x a x a
 (18)

108 E. Bini and C. Scordino

whose only admissible solution in [,1]a is

() () 2

opt

5 5 2 5 3 5 8 1 5

8

a
x

− + − − −
= (19)

These equations show that our result is an improvement
with respect to the sub-optimal solution proposed by Zhu
and Mueller (2004) (i.e., setting xC equal to avg).C In fact,

from both equations (17) and (19), we see that the ‘optimal
value is always greater than’ avgC (see also Figure 4).

Providing avgC cycles at speed Lα would increase the

average energy consumed in the period.

Figure 4 The optimal number of cycles (see online version for
colours)

4.2 Exponential density

The probability density considered previously is very simple
and it allows finding the exact value of the pair (,)xC Q that
minimises the average energy consumption. We consider
now a more sophisticated density ()C cƒ that better captures
the characteristics of real execution times. Without loss of
generality, we normalise the number of cycles with respect
to maxC so that the possible values of cycles are in [0,1].

As before, we set min

max
.

C
a
C

=

We consider the following exponential PDF:

()
()() []1 if ,11

0 otherwise

c

C

c ae c c a
Kc

⎧ ∈− −⎪⎪= ⎨
⎪
⎪⎩

β

ƒ (20)

where K is a proper constant such that
1

()d 1.C
a

c c =∫ ƒ The

presence of β allows to alter the symmetry of the density.
In fact, for negative values of β the density shifts to the
left, meaning that values closer to minC are more likely to
happen. On the other hand, positive values of β means that

execution cycles closer to maxC occur more frequently.
Figure 5 shows the shape of some possible functions.

Figure 5 Exponential PDFs

Unfortunately, when dealing with exponential densities, the
minimal energy (,)xC Q pair can only be found by
numerical approximation. We investigated the effect of the
PDF asymmetry onto the solution. The result is quite

interesting. In Figure 6, we plot the ratios
avg

xC

C
 and ,Q

T

assuming min

max
0.2.

C
a
C

= = A first result, also noticed for

uniform density case, is that the optimal xC is always
greater than avg .C This fact is evidenced by the black curve

which is always above 1. We also highlight that for large
positive values of β (meaning that values closer to maxC
are more likely to occur), xC approaches to avg .C

Figure 6 The optimal (,)xC Q pair as a function of the
symmetry

 Optimal two-level speed assignment for real-time systems 109

Figure 7 Impact of the overheads

4.3 Impact of the overheads

In this experiment, we evaluate the impact of energy
overhead e and the time overhead o on the energy
consumed. For this purpose, we fix the PDF ()C cƒ equal to
the exponential density with 50= −β (please refer to
Section 4.2), and the power function 3() .p =α α Then, we
vary the time overhead o and the energy overhead e and,
for each value, we compute the average energy consumption

avg .E The results are shown in Figure 7.
As expected, increasing the overheads results in an

increase of the energy consumed.

4.4 Idle power

As remarked at the end of Section 3.1, the energy consumed
during the idle operating mode IΛ can be taken into
account by adjusting properly the parameters of the two
modes LΛ and .HΛ In this section, we evaluate the impact
of the power Ip consumed during the idle mode on the
optimal values of the speed switch. In the experiments, the
PDF is set equal to the exponential density and the power

function is assumed to be cubic. In Figure 8, we plot the
results.

Figure 8 Impact of the idle power on, (a) the finishing time
avgƒ (b) the speed Lα (c) the speed Hα

(a)

(b)

(c)

110 E. Bini and C. Scordino

The increase of the average finishing time avgƒ shown in

Figure 8(a) is justified by the fact that the processor
consumes energy during the idle mode IΛ as well. To
avoid a waste of energy, it is preferable to stay in active
mode for a longer time by deferring the average finishing
time avg.ƒ Therefore, it is possible to lower the speeds Lα

and .Hα This insight is confirmed by Figures 8(b) and 8(c).

5 Conclusions

Deferring the workload is an effective technique to reduce
the energy consumed by the processor when the actual
number of cycles is unknown.

We exploited this technique when proposing a general
model for the processor that accounts for the idle power and
for both the time and the energy overheads due to frequency
transitions. We computed the optimal values for the speed
assignments and the transition instant within our energy
management scheme. We also studied how the overhead
and the idle power affect the optimal values. Very
interestingly, we showed that the power consumed during
the idle operating mode can be easily taken into account by
adjusting the active operating modes of the processor.

Finally, we showed how our results can be applied to
some common cases (namely, the uniform and exponential
densities).

As future work, we plan to implement the algorithm in
the RTSim Simulator (http://www.rtsim.sf.net) to evaluate
the improvement over the existing energy aware techniques.

References
Aydin, H., Melhem, R., Mossé, D. and Mejía-Alvarez, P. (2004)

‘Power-aware scheduling for periodic real-time tasks’, IEEE
Transactions on Computers, Vol. 53, No. 5, pp.584–600.

Barroso, L.A., Dean, J. and Holzle, U. (2003) ‘Web search for a
planet: the Google cluster architecture’, IEEE Micro, Vol. 23,
No. 2, pp.22–28.

Bernat, G., Colin, A. and Petters, S.M. (2003) ‘pWCET: a tool for
probabilistic worst-case execution time analysis of real-time
systems’, YCS-2003-353, Department of Computer Science,
University of York.

Bianchini, R. and Rajamony, R. (2004) ‘Power and energy
management for server systems’, Computer, Vol. 37, No. 11,
pp.68–74.

Bini, E., Buttazzo, G.C. and Lipari, G. (2005) ‘Speed modulation
in energy-aware real-time systems’, Proceedings of the 17th
Euromicro Conference on Real-Time Systems, Palma de
Mallorca, Spain.

Bohrer, P., Elnozahy, E.N., Keller, T., Kistler, M., Lefurgy, C.,
McDowell, C. and Rajamony, R. (2002) The Case for Power
Management in Web Servers, Kluwer Academic Publishers.

Burns, A., Bernat, G. and Broster, I. (2003) ‘A probabilistic
framework for schedulability analysis’, Proceedings of the
EMSOFT, Philadelphia, PA, USA, pp.1–15.

Chandrakasan, A.P. and Brodersen, R.W. (1995) Low Power
Digital CMOS Design, Kluwer Academic Publishers,
ISBN: 0-7923-9576-X.

CrusoeTM Processor Model TM5800 Version 2.1 Data Book
Revision 2.01 (2003) Transmeta Corp., available at
http://www.transmeta.com.

Ermedahl, A., Stappert, F. and Engblom, J. (2003) ‘Clustered
calculation of worst-case execution times’, Proceedings of the
6th International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, San José, CA.

Gruian, F. (2002) ‘Energy-centric scheduling for real-time
systems’, PhD thesis, Department of Computer Science, Lund
Institute of Technology, Lund, Sweden.

Hong, I., Qu, G., Potkonjak, M. and Srivastava, M.B. (1998)
‘Synthesis techniques for low-power hard real-time systems
on variable voltage processors’, Proceedings of the 19th IEEE
Real-Time Systems Symposium, Madrid, Spain, pp.178–187.

Intel Centrino Mobile Technology, Intel Corp., available at
http://developer.intel.com/design/mobile/centrinoplatformove
rview.htm.

Intel Corp. (2004a) Enhanced Intel SpeedStep Technology for the
Intel Pentium M Processor.

Intel Corp. (2004b) Intel PXA27x Processor Family Power
Requirements.

Ishihara, T. and Yasuura, H. (1998) ‘Voltage scheduling problem
for dynamically variable voltage processors’, Proceedings of
the International Symposium on Low Power Electronics and
Design, Monterey, CA, USA, pp.197–202.

Lee, S. and Sakurai, T. (2000) ‘Run-time voltage hopping for
low-power real-time systems’, Proceedings of the 37th
Design Automation Conference, Los Angeles, CA, USA,
pp.806–809.

Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M. and
Keller, T.W. (2003) ‘Energy management for commercial
servers’, IEEE Computer, Vol. 36, No. 12, pp.39–48.

Lorch, J.R. and Smith, A.J. (2001) ‘Improving dynamic voltage
scaling algorithms with pace’, ACM SIGMETRICS,
Cambridge, MA, USA, pp.50–61.

Mochocki, B., Hu, X.S. and Quan, G. (2002) ‘A realistic variable
voltage scheduling model for real-time applications’,
Proceedings of the International Conference on Computer
Aided Design, San José, CA, USA, pp.726–731.

MPC5200: 32 Bit Embedded Processor, Motorola, available at
http://e-www.motorola.com/webapp/sps/library/prod_lib.jsp.

PARTS, Power efficiency test, available at
http://www.cs.pitt.edu/PARTS/demos/efficient.

Pillai, P. and Shin, K.G. (2001) ‘Real-time dynamic voltage
scaling for low-power embedded operating systems’,
Proceedings of the 18th ACM Symposium on Operating
System Principles, Banff, Canada, pp.89–102.

Pouwelse, J., Langendoen, K. and Sips, H. (2001) ‘Dynamic
voltage scaling on a low-power microprocessor’, Proceedings
of the 7th ACM International Conference on Mobile
Computing and Networking, Rome, Italy, pp.251–259.

Qadi, A., Goddard, S. and Farritor, S. (2003) ‘A dynamic voltage
scaling algorithm for sporadic tasks’, Proceedings of the 24th
Real-Time Systems Symposium, Cancun, Mexico, pp.52–62.

Quan, G., Niu, L., Hu, X.S. and Mochocki, B. (2004) ‘Fixed
priority based real-time scheduling for reducing energy on
variable voltage processors’, Proceedings of the 25th
IEEE Real-Time Systems Symposium, Lisbon, Portugal,
pp.309–318.

Rabaey, J.M., Chandrakasan, A. and Nikolic, B. (2002) Digital
Integrated Circuits, Prentice Hall, 2nd ed.,
ISBN: 0-13-090996-3.

 Optimal two-level speed assignment for real-time systems 111

Rusu, C., Ferreira, A., Scordino, C., Watson, A., Melhem, R. and
Mossé, D. (2006) ‘Energy-efficient real-time heterogeneous
server clusters’, Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS’06), San José, CA, USA.

Saewong, S. and Rajkumar, R. (2003) ‘Practical voltage-scaling
for fixed-priority RT-systems’, Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’03), Washington, DC, USA, pp.106–114.

Scordino, C. and Bini, E. (2005) ‘Optimal speed assignment for
probabilistic execution times’, 2nd Workshop on
Power-Aware Real-Time Computing, Jersey City, NJ, USA.

Scordino, C. and Lipari, G. (2004) ‘Using resource reservation
techniques for power-aware scheduling’, Proceedings of the
4th ACM International Conference on Embedded Software,
Pisa, Italy, pp.16–25.

Semiconductors, ITR International Sematech, available at
http://public.itrs.net/.

Wegener, J. and Mueller, F. (2001) ‘A comparison of static
analysis and evolutionary testing for the verification of timing
constraints’, Real-Time Systems, Vol. 21, pp.241–268.

Xu, R., Xi, C., Melhem, R. and Mossé, D. (2004) ‘Practical PACE
for embedded systems’, 4th ACM International Conference
on Embedded Software (EMSOFT ’04), Pisa, Italy.

Xu, R., Zhu, D., Rusu, C., Melhem, R. and Mossé, D. (2005)
‘Energy-efficient policies for embedded clusters’, ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES’05), Chicago, IL, USA.

Zhu, Y. and Mueller, F. (2004) ‘Feedback EDF scheduling
exploiting dynamic voltage scaling’, Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada, pp.84–93.

Nomenclature

Symbol Explanation

kΛ the thk processor operating mode

kα speed when running in kΛ mode

kp power consumption when running in kΛ mode

ko the time overhead to enter the kΛ mode

ke the energy overhead to enter the kΛ mode

LΛ the low speed operating mode

HΛ the high speed op. mode, entered after the speed
switch

IΛ the idle op. mode, entered when the task has
finished

T the task period and deadline

maxC the worst-case execution cycles

avgC the average execution cycles

xC cycles provided in mode LΛ

Q instant when switching from LΛ to HΛ

()C cƒ the PDF of the execution cycles

()CF c the cumulative density function (CDF) of the
execution cycles

Nomenclature (continued)

Symbol Explanation

()CG c
0

()d .= ∫
c

Cx x xƒ A property of ()CG c is that

max avg()CG C C=

()xγ ()() 1 ()C CG x x F x= + −

()AE c active energy consumed in modes ,LΛ ,HΛ when
executing c cycles

()I cE idle energy consumed in mode ,IΛ when
executing c cycles

avg
AE average active energy

avg
IE average idle energy

avgE average total (active + idle) energy

