116 research outputs found

    Knockdown of Snail Sensitizes Pancreatic Cancer Cells to Chemotherapeutic Agents and Irradiation

    Get PDF
    The prognosis of patients with pancreatic cancer remains poor; only patients with small tumors and complete resection have a chance of a complete cure. Pancreatic cancer responds poorly to conventional therapies, including chemotherapy and irradiation. Snail is a transcription factor that has been associated with anti-apoptotic and chemoresistant properties in pancreatic cancer cells. In this study, we investigated whether knockdown of Snail suppresses growth of and/or sensitizes pancreatic cancer cells to chemotherapeutic agents and irradiation through induction of apoptosis. An adeno-associated virus vector was used to deliver Snail siRNA and knockdown Snail expression in untreated pancreatic cancer cells and in pancreatic cancer cells treated with chemotherapeutic agents or γ-irradiation. Our data indicate that our adeno-associated virus vector can efficiently deliver Snail siRNA into PANC-1 cells both in vitro and in vivo, resulting in the knockdown of Snail expression at the mRNA and protein levels. We further show that knockdown of Snail expression results in potent growth suppression of pancreatic cancer cells and suppresses xenograft tumor growth in vivo through induction of apoptosis. Finally, knockdown of Snail expression significantly sensitizes pancreatic cancer cells to chemotherapeutic agents and γ-irradiation through induction of apoptosis. In conclusion, our findings indicate that Snail is an important modulator of therapeutic responses of pancreatic cancer cells and is potentially useful as a sensitizer in pancreatic cancer therapy

    Neuroanatomical Correlates of Creativity: Evidence From Voxel-Based Morphometry

    Get PDF
    Creativity was a special cognitive capacity which was crucial to human survival and prosperity. Remote associates test (RAT), identifying the relationships among remote ideas, was one of the most frequently used methods of measuring creativity. However, the structural characteristics associated with RAT remains unclear. In the present study, the relationship between gray matter density (GMD)/white matter density (WMD) and RAT was explored using voxel-based morphometry (VBM) in a larger healthy college student sample (144 women and 117 men). Results showed that the score of RAT was significantly positively related with the GMD in the right anterior superior temporal gyrus (aSTG) and negatively correlated with the GMD in the right dorsal anterior cingulate cortex (dACC). Meanwhile, results also showed that the score of RAT was significantly positively related with the WMD in the right dACC and negatively correlated with the WMD in the left inferior frontal gyrus (IFG). These findings indicate that individual creativity, as measured by the RAT, was mainly related to the regional gray /white matter density of brain regions in the aSTG, dACC and IFG, which might have been involved in the forming of novel combinations, breaking of mental set, monitoring of conflict and semantic integration

    Individual phosphorylation sites at the C-terminus of the apelin receptor play different roles in signal transduction

    Get PDF
    The apelin and Elabela proteins constitute a spatiotemporal double-ligand system that controls apelin receptor (APJ) signal transduction. Phosphorylation of multiple sites within the C-terminus of APJ is essential for the recruitment of β-arrestins. We sought to determine the precise mechanisms by which apelin and Elabela promote APJ phosphorylation, and to elucidate the influence of β-arrestin phosphorylation on G-protein-coupled receptor (GPCR)/β-arrestin-dependent signaling. We used techniques including mass spectrometry (MS), mutation analysis, and bioluminescence resonance energy transfer (BRET) to evaluate the role of phosphorylation sites in APJ-mediated G-protein-dependent and β-dependent signaling. Phosphorylation of APJ occurred at five serine residues in the C-terminal region (Ser335, Ser339, Ser345, Ser348 and Ser369). We also identified two phosphorylation sites in β-arrestin1 and three in β-arrestin2, including three previously identified residues (Ser412, Ser361, and Thr383) and two new sites, Tyr47 in β-arrestin1 and Tyr48 in β-arrestin2. APJ mutations did not affect the phosphorylation of β-arrestins, but it affects the β-arrestin signaling pathway, specifically Ser335 and Ser339. Mutation of Ser335 decreased the ability of the receptor to interact with β-arrestin1/2 and AP2, indicating that APJ affects the β-arrestin signaling pathway by stimulating Elabela. Mutation of Ser339 abolished the capability of the receptor to interact with GRK2 and β-arrestin1/2 upon stimulation with apelin-36, and disrupted receptor internalization and β-arrestin-dependent ERK1/2 activation. Five peptides act on distinct phosphorylation sites at the APJ C-terminus, differentially regulating APJ signal transduction and causing different biological effects. These findings may facilitate screening for drugs to treat cardiovascular and metabolic diseases

    Secular trend of the leading causes of death in China from 2003 to 2013

    Get PDF
    Background: To analyze the epidemiological characteristics and secular trends of the leading causes of death in China.Methods: Data on the leading causes of death was collected from the Statistical Yearbook of China. Data for 11 years, from 2003 to 2013, was analyzed by regression analysis and chi-square test.Results: The top 3 causes of death from 2009 to 2013 were cancer, cerebrovascular disease, and cardiopathy, with the role of cardiopathy increasing over time (P<0.01). The proportion of deaths related to cardio-cerebrovascular diseases in urban and rural areas increased to 41.9% and 44.8%, respectively, in 2013, and was significantly higher than that for cancer, 25.5% and 22.4% (both P<0.01). Injury and poisoning in urban or rural areas represented the fifth leading cause of death. In 2006, endocrine, nutritional, and metabolic diseases were the sixth main cause of death, with 3.3% in urban areas. The role of genito-urinary,respiratory, and digestive system diseases in urban areas and genito-urinary system diseases in rural areas decreased during this period (all P<0.05).Conclusion: Cancer, cerebrovascular disease, and cardiopathy accounted for more than 67% of all deaths from 2007 to 2013 in China, and significantly increased in proportion from 2003 to 2013.Keywords: Causes of death; China; cancer; cardiovascular diseas

    Secular trend of the leading causes of death in China from 2003 to 2013.

    Get PDF
    Background: To analyze the epidemiological characteristics and secular trends of the leading causes of death in China. Methods: Data on the leading causes of death was collected from the Statistical Yearbook of China. Data for 11 years, from 2003 to 2013, was analyzed by regression analysis and chi-square test. Results: The top 3 causes of death from 2009 to 2013 were cancer, cerebrovascular disease, and cardiopathy, with the role of cardiopathy increasing over time (P<0.01). The proportion of deaths related to cardio-cerebrovascular diseases in urban and rural areas increased to 41.9% and 44.8%, respectively, in 2013, and was significantly higher than that for cancer, 25.5% and 22.4% (both P<0.01). Injury and poisoning in urban or rural areas represented the fifth leading cause of death. In 2006, endocrine, nutritional, and metabolic diseases were the sixth main cause of death, with 3.3% in urban areas. The role of genito-urinary, respiratory, and digestive system diseases in urban areas and genito-urinary system diseases in rural areas decreased during this period (all P<0.05). Conclusion: Cancer, cerebrovascular disease, and cardiopathy accounted for more than 67% of all deaths from 2007 to 2013 in China, and significantly increased in proportion from 2003 to 2013

    Transmembrane peptide 4 and 5 of APJ are essential for its heterodimerization with OX1R

    Get PDF
    Increasing evidence indicates some G protein-coupled receptors function as a heterodimer, which provide a novel target for therapeutics investigation. However, study on the receptor-receptor interaction interface, a potent target on interfering dimer formation, are still limited. Here, using bioluminescence resonance energy transfer (BRET) combined with co-immunoprecipitation (Co-IP), we found a new constitutive GPCR heterodimer, apelin receptor (APJ)-orexin receptor type 1 (OX1R). Both APJ and OX1R co-internalized when constantly subjected to cognate agonist (apelin-13 or orexin-A) specific to either protomer. Combined with BRET and immunostaining, the in vitro synthesized transmembrane peptides (TMs) interfering experiments suggests that TM4 and 5 of APJ act as the interaction interface of the APJ-OX1R heterodimer, and co-internalization could be disrupted by these peptides as well. Our study not only provide new evidence on GPCR heterodimerization, but address a novel heterodimerization interface, which can be severed as a potential pharmacological target

    EGFR deficiency leads to impaired self-renewal and pluripotency of mouse embryonic stem cells

    Get PDF
    Background Self-renewal and pluripotency are considered as unwavering features of embryonic stem cells (ESCs). How ESCs regulate the self-renewal and differentiation is a central question in development and regenerative medicine research. Epidermal growth factor receptor (EGFR) was identified as a critical regulator in embryonic development, but its role in the maintenance of ESCs is poorly understood. Methods Here, EGFR was disrupted by its specific inhibitor AG1478 in mouse ESCs (mESCs), and its self-renewal and pluripotency were characterized according to their proliferation, expression of pluripotency markers, embryoid body (EB) formation, and mRNA expression patterns. We also used another EGFR inhibitor (gefitinib) and RNA interference assay to rule out the possibility of non-specific effects of AG1478. Results EGFR inhibition by AG1478 treatment in mESCs markedly reduced cell proliferation, caused cell cycle arrest at G0/G1 phase, and altered protein expressions of the cell cycle regulatory genes (CDK2 (decreased 11.3%) and proliferating cell nuclear antigen (decreased 25.2%)). The immunoreactivities and protein expression of pluripotency factors (OCT4 (decreased 26.9%)) also dramatically decreased, while the differentiation related genes (GATA4 (increased 1.6-fold)) were up-regulated in mESCs after EGFR inhibition. Meanwhile, EGFR inhibition in mESCs disrupted EB formation, indicating its impaired pluripotency. Additionally, the effects observed by EGFR inhibition with another inhibitor gefitinib and siRNA were consistent with those observed by AG1478 treatment in mESCs. These effects were manifested in the decreased expression of proliferative and pluripotency-related genes and the increased expression of genes involved in differentiation. Moreover, RNA-seq analysis displayed that transcript profiling was changed significantly after EGFR inhibition by AG1478. A large number of differentially expressed genes were involved in cell cycle, apoptotic process, epigenetic modification, and metabolic process, which were related to self-renewal and pluripotency, confirming that EGFR deficiency impaired self-renewal and pluripotency in mESCs. Conclusions Taken together, our results demonstrated the importance of EGFR in guarding the stemness of mESCs

    Disruption of 5-hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer formation affects novel G protein-dependent signaling pathways and has antidepressant effects in vivo

    Get PDF
    G protein-coupled receptor (GPCR) heterodimers are new targets for the treatment of depression. Increasing evidence supports the importance of serotonergic and orexin-producing neurons in numerous physiological processes, possibly via a crucial interaction between 5-hydroxytryptamine 1A receptor (5-HT1AR) and orexin receptor 1 (OX1R). However, little is known about the function of 5-HT1AR/OX1R heterodimers. It is unclear how the transmembrane domains (TMs) of the dimer affect its function and whether its modulation mediates antidepressant-like effects. Here, we examined the mechanism of 5-HT1AR/OX1R dimerization and downstream G protein-dependent signaling. We found that 5-HT1AR and OX1R form constitutive heterodimers that induce novel G protein-dependent signaling, and that this heterodimerization does not affect recruitment of β-arrestins to the complex. In addition, we found that the structural interface of the active 5-HT1AR/OX1R dimer transforms from TM4/TM5 in the basal state to TM6 in the active conformation. We also used mutation analyses to identify key residues at the interface (5-HT1AR R1514.40, 5-HT1AR Y1985.41, and OX1R L2305.54). Injection of chronic unpredictable mild stress (CUMS) rats with TM4/TM5 peptides improved their depression-like emotional status and decreased the number of endogenous 5-HT1AR/OX1R heterodimers in the rat brain. These antidepressant effects may be mediated by upregulation of BDNF levels and enhanced phosphorylation and activation of CREB in the hippocampus and medial prefrontal cortex. This study provides evidence that 5-HT1AR/OX1R heterodimers are involved in the pathological process of depression. Peptides including TMs of the 5-HT1AR/OX1R heterodimer interface are candidates for the development of compounds with fast-acting antidepressant-like effects
    corecore