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Creativity was a special cognitive capacity which was crucial to human survival and
prosperity. Remote associates test (RAT), identifying the relationships among remote
ideas, was one of the most frequently used methods of measuring creativity. However,
the structural characteristics associated with RAT remains unclear. In the present study,
the relationship between gray matter density (GMD)/white matter density (WMD) and
RAT was explored using voxel-based morphometry (VBM) in a larger healthy college
student sample (144 women and 117 men). Results showed that the score of RAT was
significantly positively related with the GMD in the right anterior superior temporal gyrus
(aSTG) and negatively correlated with the GMD in the right dorsal anterior cingulate
cortex (dACC). Meanwhile, results also showed that the score of RAT was significantly
positively related with the WMD in the right dACC and negatively correlated with
the WMD in the left inferior frontal gyrus (IFG). These findings indicate that individual
creativity, as measured by the RAT, was mainly related to the regional gray /white matter
density of brain regions in the aSTG, dACC and IFG, which might have been involved
in the forming of novel combinations, breaking of mental set, monitoring of conflict and
semantic integration.

Keywords: creativity, remote associates test, voxel-based morphometry, anterior superior temporal gyrus, gray
matter density

INTRODUCTION

Creativity is an important cognitive ability which was crucial to human survival and prosperity
(Ashtari and Cyckowski, 2012). It was considered as the creation of something unusual as well
as potentially useful (Rex Eugene Sternberg and Lubart, 1993; Jung et al., 2013). The systematic
exploration of creativity within psychology begins with the Guilford’s (Guilford, 1950) seminal
address at the American Psychological Association (APA).

Creativity can be the result of divergent as well as convergent thinking (Guilford, 1950; Arden
et al., 2010; Dietrich and Kanso, 2010). In the divergent thinking task, subjects were asked to
generate multiple answers to open-ended questions, such as “describe what would happen if there is
no sun” or “generate as many alternative uses as possible for brick”. In the convergent thinking task,
participants were required to generate single answers to closed-ended problems, such as the Remote
Associates Task (Mednick, 1962). The creative thinking process had been further defined “. . .as the
forming of associative elements into new combinations which either meet specified requirements
or are in some way useful” (Mednick, 1962). Mednick (1962) proposed the associative theory of the
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creative process and developed the remote association test (RAT),
assessed the ability to identify relationships among remote ideas,
as the form of a test of creative convergent thinking. Two
university-level versions of RAT were constructed and each
version consisted of thirty problems (Mednick and Mednick,
1967; Mednick, 1968). Each problem consisted of three stimulus
words that can be combined with a fourth word in several
ways, such as with synonymy, compound word and semantic
association (Mednick and Mednick, 1967; Bowden and Jung-
Beeman, 2003). Based on RAT, Bowden and Jung-Beeman (2003)
had created a whole set of 144 Compound Remote Associate
(CRA) problems which can be solved through formation of a
compound word with all three given words. Overall, RAT or
similar problems had been widely used in the investigation of
insightful problem solving and creative thinking (e.g., Bowers
et al., 1990; Schooler and Melcher, 1995; Kihlstrom et al., 1996;
Ansburg, 2000; Qiu et al., 2008).

Previous studies indicate the importance of associative
processing for convergent thinking (Mednick et al., 1964; Brown,
1973; Benedek et al., 2012). Higher associative fluency and more
unusual association were found in more creative people rather
than less creative people (Benedek et al., 2014). Other studies also
found that there were more abundant and flexible connection
networks in more creative people compared to less creative
people (Carlsson et al., 2000; Jausovec and Jausovec, 2000).
These inter-individual creative behavioral differences might be
revealed by the structural brain imaging method (Kanai and Rees,
2011).

Recent investigations utilized electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI) to explore the
neuromechanism of remote associates problems (for reviews see
Arden et al., 2010; Dietrich and Kanso, 2010). Previous studies
found that the superior temporal gyrus (STG) was consistently
associated with creative thinking (Jung-Beeman et al., 2004;
Kounios et al., 2008). For example, Jung-Beeman et al. (2004)
investigated remote associate problems solving with fMRI and
EEG. They found that increased brain activity in the right
anterior STG was associated with insightful solutions relative to
non-insightful solutions. With EEG they found that insightful
problem solving was accompanied by high frequency EEG
activity in the same brain region. These results might suggest that
the STG area was involved in the linking of unrelated concepts
together or the changing of representation.

A growing number of studies have centered on the inter-
individual behavioral differences (Kanai and Rees, 2011) and
its associated neuroanatomical correlates using non-invasive
structural magnetic resonance imaging (sMRI) (e.g., Takeuchi
et al., 2010a; Jung et al., 2010b; Li et al., 2015). T1-weighted
imaging was the frequently- used sMRI sequence, which offered
brain images with higher resolution and lower noise. Some
indicators, regional gray matter density (rGMD), regional gray
matter volume (rGMV) and cortical thickness, were obtained
from T1-weighted image. Both rGMV and rGMD could be
obtained from voxel-based morphometry (VBM) method which
was used usually and possessed high validity in measuring
brain structure. The rGMV measure reflected the absolute
gray and white matter volume, whereas the rGMD reflected

the relative gray and white matter concentrations (Takeuchi
et al., 2011). The results of both rGMD and rGMV were
typically similar (Good et al., 2001). These two kinds of
measures were used frequently in brain anatomical researches
(Andrea et al., 2005). Because of the gray matter which was
thinning during natural maturing process (Sowell et al., 1999;
Sowell et al., 2003; Sowell et al., 2014) and adolescents who
were in the key period of cortical thinning (Ashtari and
Cyckowski, 2012; Fuhrmann et al., 2015), rGMD was used
more frequently than rGMV in studies in which subjects were
adolescents.

Although creative thinking was a pervasive research topic
in the domains of psychology and cognitive neuroscience, the
neural basis of creativity remains largely unclear. Previous studies
have investigated the neuroanatomical correlates underlying the
measures of divergent thinking using sMRI. One review article
indicated that convergent thinking was related to an increase
as well as a decrease of cortical volume and thickness (Jung
et al., 2013). Increased brain regions consisted of superior parietal
lobule (Gansler et al., 2011), precuneus, midbrain, dorsolateral
prefrontal cortex and striatum (Takeuchi et al., 2010a), and
right angular gyrus and posterior cingulate (Jung et al., 2010b).
Cousijn et al. (2014) further found that visuo-spatial divergent
thinking was associated with increased cortical thickness in the
right superior frontal gyrus and various occipital, parietal, and
temporal areas. At the same time, Fink et al. (2014) explored the
relationship between rGMD and divergent thinking and found
that divergent thinking was positively correlated with the rGMD
in the right cuneus and the right precuneus which might be
involved in vivid imaginative ability in more creative individuals.
Other studies further manifested that divergent thinking was
associated with the increased rGMV in left and right inferior
frontal gyrus (Zhu et al., 2013) and precuneus and caudate
nucleus (Jauk et al., 2015) and the increased rGMD in the right
precuneus and cuneus (Fink et al., 2014). These brain structure
studies indicated that the structural basis of divergent thinking
was associated with widely distributed brain regions (Dietrich,
2007; Takeuchi et al., 2017) and not a supporter of the notion of
“more is better” (Jung et al., 2010a). These inconsistent results
might be because of the complicacy of divergent thinking which
depends on several cognitive functions (Dietrich, 2004; Dietrich
and Kanso, 2010; Takeuchi et al., 2010b; Jung et al., 2013).

On the other hand, relatively few studies investigated the
structural correlates of convergent thinking (e.g., RAT) using
sMRI. Bendetowicz et al. (2017) employed 54 participants
to investigate the brain anatomical basis of RAT and found
the problem-solving associated with the decreased rGMV in
the left rostrolateral prefrontal cortex as well as the left
inferior parietal lobule. Ogawa et al. (2018) explored the neural
basis of the insightful task (e.g., RAT) in a large sample
(232 subjects) and found the task score correlated with the
increased rGMV in the right insula and the middle cingulate
cortex/precuneus and the decreased rGMV in the left crus 1 of
cerebellum and the right supplementary motor area. A recent
study explored the anatomical basis of remote association test
in bipolar depression patients and found this test associated
with the increased rGMV in the medial prefrontal gyrus.
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Although these results conflicted with previous fMRI study
of convergent thinking (Jung-Beeman et al., 2004), it was
consistent with the findings of divergent thinking associated
with widely distributed brain regions. A recent meta analysis
study investigated the neural basis of insight and found that
extensive brain regions, containing the left inferior frontal gyrus
and the amygdala, and the right medial frontal gyrus and
the hippocampus, were activated by insight problem solving
(Shen et al., 2018). Another review specialized in the function
of the temporal lobe in insightful process and revealed an
integrated-model on the role of different parts of temporal lobe
in insight (Shen et al., 2017). However, no study investigating
the association between convergent thinking and structural
regions examined whether intelligence may also moderate the
relationship between creative potential and brain structure in
light of rGMD.

In the present study, we focused on the convergent thinking
measured by the Chinese version of RAT modified from the
compound association task (Bowden and Jung-Beeman, 2003)
and the structural basis of convergent thinking using the measure
of rGMD derived from VBM method. The latest study found
that divergent thinking training could increase the rGMV in
the dorsal anterior cingulate cortex (Sun et al., 2016). Other
research indicated that frequently recruited brain regions would
increase its volume (Maguire et al., 2000). We assumed that brain
regions activated by convergent thinking would correspond with
brain structural characteristic (e.g., increased and/or decreased
rGMD) with the purpose of creativity performance. One of
the goals of the present study was to confirm whether brain
regions activated by compound remote association task in
Mark Jung-Beeman et al. (2004) could be found again in the
matter of rGMD. Previous studies indicated the importance of
prefrontal gyrus for creativity. Besides, Broca’s area, a portion of
inferior frontal gyrus, was known for involvement in language
comprehension and production. Hence, the prefrontal gyrus or
inferior frontal gyrus might likely to rediscovered. Consider that
the anterior cingulate cortex was proved repeatedly and reliably
by numerous studies to be involved in cognitive conflict detecting
and mental set breaking (Dietrich and Kanso, 2010). Based on
the notion that brain regions involved in some cognitive function
would impact the efficiency and quality of the individual’s
capacity to complete that function, the performance of RAT
was assumed to be related with rGMD in anterior cingulate
cortex which were certified to be crucial to insightful problem
solving.

MATERIALS AND METHODS

Participants
Two hundred and seventy-six university students (150
females and 126 males; the mean = 19.89 years, standard
deviation = 1.28), who came from Southwest University
(Chongqing, China), participated in the present research. The
sample involved in our study was a part of Southwest University
Longitudinal Imaging Multimodal (SLIM) data (for more details,
please see: http://www.qiujlab.com), which was available for

other investigators through the International Neuroimaging
Data-sharing Initiative (INDI)1. The main purpose of this project
was to explore the relationship among individual differences in
brain structure and function, creativity, and mental health. The
protocols of both behavioral and structural MRI were confirmed
by the research ethics committee of Southwest University.
The informed consent form was signed by participants before
participating, which was authorized by the Institutional Human
Participants Review Board of Brain Imaging Research Centre in
Southwest University.

Nine subjects were removed because of the unfinished
questionnaires of RAT and CRT. Another six participants were
excluded because of the excessively large scanning artifacts and
unnatural brain structures. Thus, 261 participants remained in
the topological properties analysis. There were 117 males (mean
age = 20.09 years, standard deviation = 1.33) and 144 females
(mean age = 19.69 years, standard deviation = 1.23).

Assessment of Convergent Thinking
The RAT was used to measure convergent thinking, which
developed by Mednick (1962) as a means of measuring creativity
considered with no need for knowledge specific to any field. We
selected 25 items which were evaluated to be insightful (mean
score > 1.8) on a scale of 1 (No-insightful feeling) to (strongest
insightful feeling) for each items by another group of subjects
(total 20). Each of the 25 items consists of three Chinese words
that could be connected with an answer word in the way of
formation of a compound word. For example, the three words
“pai, mai, fan” ( , , ) were connected with the solution word
“mai” ( ) by way of the forming of compound word ( ,

, ). Reaching a solution needs creative thinking, because
the information extracted from memory is usually wrong, and
participants must come up with a more remotely related word
for the purpose of problem solving. The intra-subject reliability
was 0.719 measured by Cronbach’s alpha.

Assessment of General Intelligence
The Combined Raven’s Matrices Test was used to test subject’s
general intelligence and corrected for the possible effect of
intelligence on brain structures (Haier et al., 2004). This test
consisted of 72 items (Li, 1989). More details on what CRT were
consisted and how CRT was performed could be found in our
previous research (Li et al., 2016). The number of right answers,
completed in 40 min, was regarded as the score of CRT.

Data Acquisition
Siemens 3T scanner (MAGENTOM Trio, a Tim System) was
used to scan subjects, which was located at the Brain Imaging
Research Centre in Southwest University, Chongqing, China.
Magnetization-prepared rapid gradient echo sequence was used
to acquireT1-weighted structural MRI images (TR = 2530 ms,
TE = 3.39 ms, TI = 1100 ms, flip angle = 7◦, FOV = 256 × 256 mm,
slice number = 128, in-plane resolution = 1 × 1 mm, slice
thinkness = 1.33 mm).

1http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html
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Imaging Data Preprocessing
VBM8 toolbox2 was used, and implemented in SPM8 software3

to perform the T1-weighted images. Firstly, each image was
examined visually and six participants were removed on account
of image quality (excessive scanner artifacts or gross anatomical
abnormalities). Secondly, each subject image was adjusted
manually to the anterior commissure (AC) and posterior
commissure (PC). Thirdly, the “new segmentation” in SPM8
was used to segment the image into gray matter, white matter,
cerebrospinal fluid and everything else (e.g., skull and scalp)
followed the standard segmentation approach (Ashburner
and Friston, 2005). Fourthly, the Diffeomorphic Anatomical
Registration through Exponential Lie algebra (DARTEL)
implemented in SPM8 was used to execute registration,
normalization and smoothness analyses. The study-specific
template was computed in registration analyses based on
the average tissue probability maps. The images were then
resampled to 1.5mm × 1.5 mm × 1.5 mm and normalized to the
generated study-specific template which was in the MNI space.
The normalized images were smoothed using an 8-mm full
width at half maximum (FWHM) Gaussian kernel. The images,
which represent the regional gray matter density and regional
white matter density, were used for the following statistical
analyses.

Behavioral Data Analysis
The statistical software SPSS 13.0 (SPSS Inc., Chicago, IL, United
Sates) was used to analyze behavioral data. The independent t-test
was carried out to explore the gender differences in the score of
RAT and CRT.

MRI Data Analysis
The multiple regression analysis was used to investigate the
relationship between convergent thinking and brain structure.
The score of RAT was considered as the variable of interest and
the gender, age and the score of CRT were entered simultaneously
as the covariates as previous researches (R.E. Jung et al., 2010b;
Fink et al., 2014; Li et al., 2015).

Multiple comparisons were calculated by using the Monte
Carlo simulation-based Alphasim program (Cox, 1996; Ward,
2000), which was included in the REST toolbox4 (Song et al.,
2011) and similar to the AlphaSim in AFNI. The threshold was
set at P < 0.05 by combining the voxel-wise P < 0.005 and
cluster size > 310 voxels (using the global gray matter mask,
FWHM = 8 mm, cluster connection radius = 5 mm and 1000
iterations). Generally, AlphaSim was widely used in previous
literatures about VBM data analysis (DeYoung et al., 2010;
Schwartz et al., 2010; Ding et al., 2012; Zou et al., 2012; Farb
et al., 2013; Kong et al., 2013; Yang et al., 2013). Although there
might be some limitations with Monte Carlo simulation (Silver
et al., 2011), it reduced the rate of false-positive results using the
cluster-level threshold.

2http://dbm.neuro.uni-jena.de/vbm/
3https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4http://restfmri.net/forum/REST_V1.8

RESULTS

Results of Behavioral Data
The results of descriptive analysis of age, the scores of RAT and
CRT were displayed in Table 1. Two-sample t tests revealed that
there were no gender differences in the score of RAT and the
score of CRT (Ps > 0.1). The P-P plot and frequency histogram
with a normal distribution curve of the score of RAT and CRT
were shown in Figure 1. The Skewness of the scores of RAT
and CRT were −0.414 and −0.490, respectively and the Kurtosis
was 0.067 and −0.539, respectively. These results showed that
both the scores of RAT and CRT were approximately normal
distribution.

Results of Structural MRI Data
After controlling the effects of age, gender and the score of
CRT, the multiple regression analysis showed that RAT was
significantly positively correlated with the rGMD in the right
STG and negatively correlated with the rGMD in the right
dorsal anterior cingulate gyrus (dACC). Meanwhile, the analysis
also revealed that RAT was significantly positively related with
the rWMD in the right dACC and negatively related with the
rWMD in the left inferior frontal gyrus (IFG) expended to
pars opercularis. No other significant effects were found. The
information of above brain regions was shown in Figure 2 and
Table 2.

DISCUSSION

In the present research, the anatomical basis of convergent
thinking as measured by RAT was explored using VBM. As far
as I knew, it was the first research to explore the relationship
between individual convergent thinking measured by RAT and
GMD/WMD. Results showed that the rGMD of the right STG
was positively correlated with RAT, while the rGMD of the
right dACC was negatively correlated with RAT. In addition,
the results also revealed that the rWMD of the right dACC was
positively correlated with RAT, while the rWMD of the left IFG
was negatively correlated with RAT. These results corresponded
to the findings that the STG was activated by remote association
problem solving and ACC and IFG were involved in creative
thinking and insightful problem solving (Jung-Beeman et al.,
2004; Aziz-Zadeh et al., 2009; Dietrich and Kanso, 2010; Jung
et al., 2010b).

Previous ERP studies had revealed that the STG was a
common region involved in remote associates problems solving
(Kounios et al., 2008; Qiu et al., 2008). Other research found
that sentence and complex discourse increased the activation

TABLE 1 | Participant demographics (N = 261; men = 117, women = 144).

Measure Mean SD Range

Age 19.86 1.29 17–27

RAT 15.97 3.40 5–24

CRT 66.19 3.47 50–72

N = number; SD = standard deviation.
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FIGURE 1 | The P-P plot and histogram of the score of RAT (upper) and CRT (lower).

in STG which involved in semantic integration (Mazoyer et al.,
1993; Stowe et al., 1999). Moreover, patients with right temporal
damage would be in trouble during comprehending metaphors
which emphasized distant semantic correlation (Brownell et al.,
1990). Especially, Mark Jung-Beeman et al. (2004) used fMRI to
explore the neuromechanism of RAT and found the increased
activation in the right STG which supposed to conduct
coarse semantic coding and accelerate the formation of remote
associations. A recent review specialized in the function of the
temporal lobe in insightful process and indicated that the aSTG
was a critical hub in the novel association forming (Shen et al.,
2017). Our findings further proved the notion that brain regions
involved in some cognitive function would impact the efficiency
and quality of the individual’s capacity to complete that function.
Taken together, the positive association between the rGMD of the
STG and the score of RAT might demonstrate that the right STG
was particularly important for tasks which required the using of
distant semantic associations between words.

The results also revealed that the rGMD of the right dACC
was negatively associated with RAT and the WMD of the
right dACC was positively correlated with RAT. Previous study
suggested dACC involved in detecting conflicts (Botvinick et al.,
1999; Enriquez-Geppert et al., 2013). It was suggested that ACC

involved in the process of almost all types of creativity, such
as insightful problem solving (Carlsson et al., 2000) and artistic
creativity (Bengtsson et al., 2007; Berkowitz and Ansari, 2008;
Kowatari et al., 2009). A recent research showed that the scores
of creativity achievement questionnaire (CAQ) was positively
associated with the rGMV in dACC and rostral ACC. Previous
studies suggested that the ACC involved in the suppression of
irrelevant thought, the shift of fixed mind-sets (Sawyer, 2011) and
the development of general strategies in creative problem solving
(Luo and Knoblich, 2007). Howard-Jones et al. (2005) discovered
creative story generation activated the ACC which engaged in
the selecting contextual information from episodic memory and
monitoring extra conflict to form the novel and appropriate story.
In consideration of the importance of dorsal ACC in different
creative tasks, the critical node of executive network, these results
might suggest that the executive network facilitated the process
of creative performance.

Meanwhile, the results revealed that the rWMD of the left
IFG which extended to pars opercularis was negatively associated
with RAT. This was in accordance with research that proved
that verbal creative task involved in IFG, supplementary area and
premotor cortex (Brown et al., 2006; Mashal et al., 2007). Broca’s
area, usually located in the triangular and opercular part of IFG
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FIGURE 2 | Gray matter density (GMD) and white matter density (WMD) were correlated with RAT scores. GMD was positively correlated with RAT scores in anterior
STG (A) and negatively correlated with RAT scores in dorsal ACC (B). WMD was positively correlated with RAT scores in dorsal ACC (C) and negatively correlated
with RAT scores in IFG (D). All results were shown at t > 2.5 for visualization purpose.

TABLE 2 | Brain regions significantly correlated with the score of RAT.

Brain regions H MNI coordinates Cluster size (mm3) t-value (peak voxel)

x y z

Gray matter density

Positive Correlation

Superior Temporal Gyrus R 60 6 −3 1474.9 5.45

Negative Correlation

Anterior Cingulate Gyrus R 7.5 −15 44.5 1454.6 4.38

White matter density

Positive Correlation

Anterior Cingulate Gyrus R 13.5 −1.5 45 1339.9 4.18

Negative Correlation

Inferior Frontal Gyrus L −25.5 6 27 1067.6 4.73

H, hemisphere; L, left hemisphere; R, Right hemisphere; MNI, Montreal Neurological Institute. The P-value was set at P < 0.05 corrected by AlphaSim.
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in left hemisphere, was frequently engaged in verbal fluency
(Costafreda et al., 2010) and semantic generation (Vidorreta
et al., 2015). Other fMRI research also found the left IFG was
involved in the generation of creative idea (Bechtereva et al.,
2004), inventive conception (Zhang et al., 2014), matchstick
problem task (Kleibeuker et al., 2013) and creative writing (Shah
et al., 2013). R.E. Jung et al. (2010a) investigated the association
between divergent thinking and white matter integrity measured
by Fractional Anisotropy (FA) and found the score of divergent
thinking task was negatively associated with the FA in the left IFG.
In our study, the decreased rGMD in the left IFG was associated
with convergent thinking. This might be because the cortical
thinning was the inevitable process during cortical maturity.
Sowell et al. (1999) found the gray matter density in the frontal
lobe decreased from adolescence to adulthood. This reduction
was thought be related to the increased efficacy of cognitive
processing (Ernst and Korelitz, 2009). This was confirmed by the
study’s finding that the decreased cortical thickness in frontal lobe
was associated with intelligence in early childhood (Shaw et al.,
2006) and the reduced cortical thickness in lingual gyrus was
related with creative task (Shaw et al., 2006). Shen et al. (2018)
also indicated that the left IFG was a part of the brain network
involved in insight process and played an important role in the
inhibitory of improper associations and the breaking of mental
sets. In the present study, the decreased rGMD associated with
higher RAT score might indicate that there was higher efficiency
and quality of the left IFG in semantic generation and integration,
which facilitated the performance of creative behavior.

In our findings, the score of RAT was associated with
STG and IFG, and was partially consisted of the model of
semantic processing named Bilateral Activation, Integration, and
Selection (BAIS) (Jung-Beeman, 2005). This model supposed that
semantic function consisted of three parts: semantic activation,
semantic integration, and semantic selection. Three different
brain regions lived in two brain hemispheres, posterior middle
and superior temporal gyrus, anterior middle and superior
temporal and inferior frontal gyrus, backed up these semantic
parts, respectively (for more details M. Jung-Beeman, 2005).
A great deal of research on creativity cognition indicated that
one or more of the above brain regions were involved in creative
performance (e.g., Jung-Beeman et al., 2004; Bengtsson et al.,
2007; Abraham et al., 2012; Aziz-Zadeh et al., 2012; Jung et al.,
2013; Kleibeuker et al., 2013; Beaty et al., 2014; Benedek et al.,
2014; Zhang et al., 2014; Li et al., 2015). This model reinforced
the relationship between creative cognition, semantic integration
and semantic selection.

In the present research, the deceased and increased GMD were
both found to be related with convergent thinking. But what
larger or smaller was more better? Previous results suggested that
neural plasticity might be expressed through reorganization of
gray matter or white matter and reflected in the deceased and
increased in disparate regions (Maguire et al., 2000; Draganski
et al., 2006). Similar results also found the gray matter volume
were positively and negatively correlated with creativity in
disparate brain regions (Chen et al., 2014; Li et al., 2015).
This question might be elucidated after the implementation
of longitudinal or intervention in further studies. Our results

further certified the notion that the functional information can
be measured in white-matter and challenged the opinion that
the blood oxygenation level-dependent (BOLD) signals in white
matter was considered as noise (Logothetis and Wandell, 2004).
Previous studies demonstrated the white matter BOLD signals,
such as the low-frequency BOLD fluctuations (LFBFs) (Ji et al.,
2017), resting-state functional connectivity (Jiang et al., 2018) and
functional networks (Huang et al., 2018), can be reliably detected
in the white-matter. These findings proposed that the WM signals
may be of physiological significance. Other studies also found the
relationship between WMD and creativity (Zhu et al., 2013; Fink
et al., 2014; Chen et al., 2018).

CONCLUSION

The present research used VBM to identify the GMD correlates of
divergent thinking as measured by RAT. The results showed that
a positive correlation between GMD in the right STG and RAT,
while a negative correlation between GMD in the right dACC
and RAT. In addition, the WMD in the dACC was positively
correlated with the RAT. These results indicate that higher
convergent thinking might be related to the enhanced ability of
sentence comprehension, information integration and conflict
monitoring. However, several limitations should be noticed.
Because the young undergraduate participants with high-level
education and right-handed subjects were enrolled, the external
validity of our research would be affected. Mismatch of the
sex distribution of our study was not matched perfectly (117
men versus 144 women). Although we found the relationship
between convergent thinking and brain gray matter, we could not
answer the question about the direction of relationship between
convergent thinking and the increased/decreased rGMD. Future
longitudinal or intervention investigations might promote the
solution of the complex relationships between convergent
thinking and brain structure. Moreover, because the present
research adopted only the rGMD to explore the structural basis
of RAT, more method could be used in the investigation of the
neural mechanisms of RAT in future. Given that convergent
thinking consisted of various task, such as anagram word puzzles
(Kounios et al., 2008) and Chinese logogriphs (Qiu et al., 2010),
the brain structural basis of other convergent thinking tasks could
be explored in the future study.
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