620 research outputs found

    The stellar correlation function from SDSS - A statistical search for wide binary stars

    Get PDF
    We study the statistical properties of the wide binary population in the Galaxy field with projected separations larger than 200 AU by constructing the stellar angular two-point correlation function (2PCF) from a homogeneous sample of nearly 670'000 main sequence stars. The selected stars lie within a rectangular region around the Northern Galactic Pole and have apparent r-band magnitudes between 15 and 20.5 mag and spectral classes later than G5 (g-r > 0.5 mag). The data were taken from the Sixth Data Release of the Sloan Digital Sky Survey. We model the 2PCF by means of the Wasserman-Weinberg technique including several assumptions on the distribution of the binaries' orbital parameters, luminosity function, and density distribution in the Galaxy. In particular, we assume that the semi-major axis distribution is described by a single powerlaw. The free model parameters - the local wide binary number density and the power-law index of the semi-major axis distribution - are inferred simultaneously by least-square fitting. We find the separation distribution to follow Oepik's law up to the Galactic tidal limit, without any break and a local density of 5 wide binaries per 1'000 cubic parsec with both components having spectral type later than G5. This implies that about 10% of all stars in the solar neighbourhood are members of such a late-type wide binary system. With a relative statistical (2 sigma) error of about 10%, our findings are in general agreement with previous studies of wide binaries. The data suggest that about 800 very wide pairs with projected separations larger than 0.1 pc exist in our sample, whereas none are found beyond 0.8 pc.Comment: 18 pages, 14 figures, 7 tables; added reference for section

    Orbital ordering, Jahn-Teller distortion, and resonant x-ray scattering in KCuF3

    Full text link
    The orbital, lattice, and spin ordering phenomena in KCuF3 are investigated by means of LDA+U calculations, based on ab-initio pseudopotentials.We examine the Cu-3d orbital ordering and the associated Jahn-Teller distortion in several different spin-ordered structures of KCuF3. The ground state is correctly predicted to be an A-type antiferromagnetic structure, and the calculated Jahn-Teller distortion agrees also well with experiment. Concerning the orbital ordering, we find that even for a highly ionic compound such as KCuF3, the orbital-order parameter is significantly reduced with respect to its nominal value due to Cu(3d)--F(2p) hybridization. We also calculate the Cu K-edge resonant x-ray scattering spectra for Bragg reflections associated with orbital order. Consistent with previous studies, we find that the resonant signal is dominated by the structural anisotropy in the distribution of the F neighbors of the resonant Cu atom, and that the Cu-3d orbital ordering has only a minor influence on the spectra. Our LDA+U results, however, also indicate that a change in the magnetic structure has a small influence on the Jahn-Teller distortion, and hence on the resonant spectrum, in the conventional (room-temperature) crystallographic structure of KCuF3. This may indicate that the large change observed experimentally in the resonant signal near the N\'eel temperature is related to a low-temperature structural transformation in KCuF3.Comment: 11 pages, 9 figure

    Magnetic properties of La(0.67)Sr(0.33)MnO3/BiFeO3(001) heterojunctions: chemically abrupt versus atomic intermixed interface

    Full text link
    Using first-principles density-functional calculations, we address the magnetic properties of the ferromagnet/antiferromagnet La(0.67)Sr(0.33)MnO3/BiFeO3(001) heterojunctions, and investigate possible driving mechanisms for a ferromagnetic (FM) interfacial ordering of the Fe spins recently observed experimentally. We find that the chemically abrupt defect-free La(0.67)Sr(0.33)MnO3/BiFeO3(001) heterojunction displays, as ground state, an ordering with compensated Fe spins. Cation Fe/Mn intermixing at the interface tends to favour, instead, a FM interfacial order of the Fe spins, coupled antiferromagnetically to the bulk La(0.67)Sr(0.33)MnO3 spins, as observed experimentally. Such trends are understood based on a model description of the energetics of the exchange interactions.Comment: 6 pages, 6 figure

    Consequences of gravitational radiation recoil

    Get PDF
    Coalescing binary black holes experience an impulsive kick due to anisotropic emission of gravitational waves. We discuss the dynamical consequences of the recoil accompanying massive black hole mergers. Recoil velocities are sufficient to eject most coalescing black holes from dwarf galaxies and globular clusters, which may explain the apparent absence of massive black holes in these systems. Ejection from giant elliptical galaxies would be rare, but coalescing black holes are displaced from the center and fall back on a time scale of order the half-mass crossing time. Displacement of the black holes transfers energy to the stars in the nucleus and can convert a steep density cusp into a core. Radiation recoil calls into question models that grow supermassive black holes from hierarchical mergers of stellar-mass precursors.Comment: 5 pages, 4 figures, emulateapj style; minor changes made; accepted to ApJ Letter

    Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. IV. The color-magnitude relation

    Full text link
    We present an analysis of the optical colors of 413 Virgo cluster early-type dwarf galaxies (dEs), based on Sloan Digital Sky Survey imaging data. Our study comprises (1) a comparison of the color-magnitude relation (CMR) of the different dE subclasses that we identified in Paper III of this series, (2) a comparison of the shape of the CMR in low and high-density regions, (3) an analysis of the scatter of the CMR, and (4) an interpretation of the observed colors with ages and metallicities from population synthesis models. We find that the CMRs of nucleated (dE(N)) and non-nucleated dEs (dE(nN)) are significantly different from each other, with similar colors at fainter magnitudes (r > 17 mag), but increasingly redder colors of the dE(N)s at brighter magnitudes. We interpret this with older ages and/or higher metallicities of the brighter dE(N)s. The dEs with disk features have similar colors as the dE(N)s and seem to be only slightly younger and/or less metal-rich on average. Furthermore, we find a small but significant dependence of the CMR on local projected galaxy number density, consistently seen in all of u-r, g-r, and g-i, and weakly i-z. We deduce that a significant intrinsic color scatter of the CMR is present, even when allowing for a distance spread of our galaxies. No increase of the CMR scatter at fainter magnitudes is observed down to r = 17 mag (Mr = -14 mag). The color residuals, i.e., the offsets of the data points from the linear fit to the CMR, are clearly correlated with each other in all colors for the dE(N)s and for the full dE sample. We conclude that there must be at least two different formation channels for early-type dwarfs in order to explain the heterogeneity of this class of galaxy. (Abridged)Comment: 17 pages + 12 figures. Accepted for publication in A

    On the unification of dwarf and giant elliptical galaxies

    Full text link
    The near orthogonal distributions of dwarf elliptical (dE) and giant elliptical (E) galaxies in the mu_e-Mag and mu_e-log(R_e) diagrams have been interpreted as evidence for two distinct galaxy formation processes. However, continuous, linear relationships across the alleged dE/E boundary at M_B = -18 mag - such as those between central surface brightness (mu_0) and (i) galaxy magnitude and (ii) light-profile shape (n) - suggest a similar, governing formation mechanism. Here we explain how these latter two linear trends necessitate a different behavior for dE and E galaxies, exactly as observed, in diagrams involving mu_e (and also _e). A natural consequence is that the distribution of dEs and Es in Fundamental Plane type analyses that use the associated intensity I_e, or _e, are expected to appear different. Together with other linear trends across the alleged dE/E boundary, such as those between luminosity and color, metallicity, and velocity dispersion, it appears that the dEs form a continuous extension to the E galaxies. The presence of partially depleted cores in luminous (M_B < -20.5 mag) Es does however signify the action of a different physical process at the centers (< ~300 pc) of these galaxies.Comment: 5 pages from the proceedings of the 2004 conference "Penetrating bars through masks of cosmic dust: the Hubble tuning fork strikes a new note". Edited by D. L. Block, I. Puerari, K. C. Freeman, R. Groess, and E. K. Bloc

    Mn L2,3_{2,3} edge resonant x-ray scattering in manganites: Influence of the magnetic state

    Full text link
    We present an analysis of the dependence of the resonant orbital order and magnetic scattering spectra on the spin configuration. We consider an arbitrary spin direction with respect to the local crystal field axis, thus lowering significantly the local symmetry. To evaluate the atomic scattering in this case, we generalized the Hannon-Trammel formula and implemented it inside the framework of atomic multiplet calculations in a crystal field. For an illustration, we calculate the magnetic and orbital scattering in the CE phase of \lsmo in the cases when the spins are aligned with the crystal lattice vector a{\vec a} (or equivalently b{\vec b}) and when they are rotated in the abab-plane by 45^{\circ} with respect to this axis. Magnetic spectra differ for the two cases. For the orbital scattering, we show that for the former configuration there is a non negligible σσ\sigma \to \sigma' (ππ\pi \to \pi') scattering component, which vanishes in the 45^\circ case, while the σπ\sigma \to \pi' (πσ\pi \to \sigma') components are similar in the two cases. From the consideration of two 90^\circ spin canted structures, we conclude there is a significant dependence of the orbital scattering spectra on the spin arrangement. Recent experiments detected a sudden decrease of the orbital scattering intensity upon increasing the temperature above the N\' eel temperature in \lsmo. We discuss this behavior considering the effect of different types of misorientations of the spins on the orbital scattering spectrum.Comment: 8 figures. In the revised version, we added a note, a reference, and a few minor changes in Figure 1 and the text. Accepted in Physical Review

    Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. II. Early-type dwarfs with central star formation

    Get PDF
    Despite the common picture of an early-type dwarf (dE) as a quiescent galaxy with no star formation and little gas, we identify 23 dEs that have blue central colors caused by recent or ongoing star formation in our sample of 476 Virgo cluster dEs. In addition, 14 objects that were mostly classified as (candidate) BCDs have similar properties. Among the certain cluster members, the dEs with blue centers reach a fraction of more than 15% of the dE population at brighter (B<=16) magnitudes. A spectral analysis of the centers of 16 galaxies reveals in all cases an underlying old population that dominates the mass, with M(old)>=90% for all but one object. Therefore the majority of these galaxies will appear like ordinary dEs within ~one Gigayear or less after the last episode of star formation. Their overall gas content is less than that of dwarf irregular galaxies, but higher than that of ordinary dEs. Their flattening distribution suggests the shape of a thick disk, similar to what has been found for dEs with disk features in Paper I of this series. Their projected spatial distribution shows no central clustering, and their distribution with projected local density follows that of irregular galaxies, indicative of an unrelaxed population. This is corroborated by their velocity distribution, which displays two side peaks characteristic of recent infall. We discuss possible formation mechanisms (ram-pressure stripping, tidally induced star formation, harassment) that might be able to explain both the disk shape and the central star formation of the dEs with blue centers.Comment: 16 pages + 15 figures. Accepted for publication in AJ. We recommend downloading the full resolution version from http://www.virgo-cluster.com/lisker2006b.ps.g

    The Dwarf Galaxy Population of the Dorado group down to Mv=-11

    Get PDF
    We present V and I CCD photometry of suspected low-surface brightness dwarf galaxies detected in a survey covering ~2.4 deg^2 around the central region of the Dorado group of galaxies. The low-surface brightness galaxies were chosen based on their sizes and magnitudes at the limiting isophote of 26.0V\mu. The selected galaxies have magnitudes brighter than V=20 (Mv=-11 for an assumed distance to the group of 17.2 Mpc), with central surface brightnesses \mu0>22.5 V mag/arcsec^2, scale lengths h>2'', and diameters > 14'' at the limiting isophote. Using these criteria, we identified 69 dwarf galaxy candidates. Four of them are large very low-surface brightness galaxies that were detected on a smoothed image, after masking high surface brightness objects. Monte Carlo simulations performed to estimate completeness, photometric uncertainties and to evaluate our ability to detect extended low-surface brightness galaxies show that the completeness fraction is, on average, > 80% for dwarf galaxies with 17<MV<10.5-17<M_{V}<-10.5 and 22.5<\mu0<25.5 V mag/arcsec^2, for the range of sizes considered by us (D>14''). The V-I colors of the dwarf candidates vary from -0.3 to 2.3 with a peak on V-I=0.98, suggesting a range of different stellar populations in these galaxies. The projected surface density of the dwarf galaxies shows a concentration towards the group center similar in extent to that found around five X-ray groups and the elliptical galaxy NGC1132 studied by Mulchaey and Zabludoff (1999), suggesting that the dwarf galaxies in Dorado are probably physically associated with the overall potential well of the group.Comment: 32 pages, 16 postscript figures and 3 figures in GIF format, aastex v5.0. To appear in The Astronomical Journal, January 200

    Galaxy threshing and the formation of ultra-compact dwarf galaxies

    Full text link
    Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster (Drinkwater et al. 2000b) have discovered several `ultra-compact dwarf' galaxies with intrinsic sizes of \sim 100 pc and absolute BB band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultra-compact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of \sim 10810^8 MM_{\odot}. These results suggest that ultra-compact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.Comment: 9 pages 4 figures,2001, ApJL, 552, 10
    corecore