244 research outputs found

    The on-top pair-correlation density in the homogeneous electron liquid

    Full text link
    The ladder theory, in which the Bethe-Goldstone equation for the effective potential between two scattering particles plays a central role, is well known for its satisfactory description of the short-range correlations in the homogeneous electron liquid. By solving exactly the Bethe-Goldstone equation in the limit of large transfer momentum between two scattering particles, we obtain accurate results for the on-top pair-correlation density g(0)g(0), in both three dimensions and two dimensions. Furthermore, we prove, in general, the ladder theory satisfies the cusp condition for the pair-correlation density g(r)g(r) at zero distance r=0r=0.Comment: 8 pages, 4 figure

    The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    Get PDF
    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone

    Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain

    Full text link

    Conditioned Pain Modulation Is Associated with Common Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    BACKGROUND: Variation in the serotonin transporter (5-HTT) gene (SLC6A4) has been shown to influence a wide range of affective processes. Low 5-HTT gene-expression has also been suggested to increase the risk of chronic pain. Conditioned pain modulation (CPM)--i.e. 'pain inhibits pain'--is impaired in chronic pain states and, reciprocally, aberrations of CPM may predict the development of chronic pain. Therefore we hypothesized that a common variation in the SLC6A4 is associated with inter-individual variation in CPM. Forty-five healthy subjects recruited on the basis of tri-allelic 5-HTTLPR genotype, with inferred high or low 5-HTT-expression, were included in a double-blind study. A submaximal-effort tourniquet test was used to provide a standardized degree of conditioning ischemic pain. Individualized noxious heat and pressure pain thresholds (PPTs) were used as subjective test-modalities and the nociceptive flexion reflex (NFR) was used to provide an objective neurophysiological window into spinal processing. RESULTS: The low, as compared to the high, 5-HTT-expressing group exhibited significantly reduced CPM-mediated pain inhibition for PPTs (p = 0.02) and heat-pain (p = 0.02). The CPM-mediated inhibition of the NFR, gauged by increases in NFR-threshold, did not differ significantly between groups (p = 0.75). Inhibition of PPTs and heat-pain were correlated (Spearman's rho = 0.35, p = 0.02), whereas the NFR-threshold increase was not significantly correlated with degree of inhibition of these subjectively reported modalities. CONCLUSIONS: Our results demonstrate the involvement of the tri-allelic 5-HTTLPR genotype in explaining clinically relevant inter-individual differences in pain perception and regulation. Our results also illustrate that shifts in NFR-thresholds do not necessarily correlate to the modulation of experienced pain. We discuss various possible mechanisms underlying these findings and suggest a role of regulation of 5-HT receptors along the neuraxis as a function of differential 5-HTT-expression

    The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli

    Get PDF
    Increasing evidence about the central nervous representation of pain in the brain suggests that the operculo-insular cortex is a crucial part of the pain matrix. The pain-specificity of a brain region may be tested by administering nociceptive stimuli while controlling for unspecific activations by administering non-nociceptive stimuli. We applied this paradigm to nasal chemosensation, delivering trigeminal or olfactory stimuli, to verify the pain-specificity of the operculo-insular cortex. In detail, brain activations due to intranasal stimulation induced by non-nociceptive olfactory stimuli of hydrogen sulfide (5 ppm) or vanillin (0.8 ppm) were used to mask brain activations due to somatosensory, clearly nociceptive trigeminal stimulations with gaseous carbon dioxide (75% v/v). Functional magnetic resonance (fMRI) images were recorded from 12 healthy volunteers in a 3T head scanner during stimulus administration using an event-related design. We found that significantly more activations following nociceptive than non-nociceptive stimuli were localized bilaterally in two restricted clusters in the brain containing the primary and secondary somatosensory areas and the insular cortices consistent with the operculo-insular cortex. However, these activations completely disappeared when eliminating activations associated with the administration of olfactory stimuli, which were small but measurable. While the present experiments verify that the operculo-insular cortex plays a role in the processing of nociceptive input, they also show that it is not a pain-exclusive brain region and allow, in the experimental context, for the interpretation that the operculo-insular cortex splay a major role in the detection of and responding to salient events, whether or not these events are nociceptive or painful

    Application of a diagnosis-based clinical decision guide in patients with neck pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neck pain (NP) is a common cause of disability. Accurate and efficacious methods of diagnosis and treatment have been elusive. A diagnosis-based clinical decision guide (DBCDG; previously referred to as a diagnosis-based clinical decision rule) has been proposed which attempts to provide the clinician with a systematic, evidence-based guide in applying the biopsychosocial model of care. The approach is based on three questions of diagnosis. The purpose of this study is to present the prevalence of findings using the DBCDG in consecutive patients with NP.</p> <p>Methods</p> <p>Demographic, diagnostic and baseline outcome measure data were gathered on a cohort of NP patients examined by one of three examiners trained in the application of the DBCDG.</p> <p>Results</p> <p>Data were gathered on 95 patients. Signs of visceral disease or potentially serious illness were found in 1%. Centralization signs were found in 27%, segmental pain provocation signs were found in 69% and radicular signs were found in 19%. Clinically relevant myofascial signs were found in 22%. Dynamic instability was found in 40%, oculomotor dysfunction in 11.6%, fear beliefs in 31.6%, central pain hypersensitivity in 4%, passive coping in 5% and depression in 2%.</p> <p>Conclusion</p> <p>The DBCDG can be applied in a busy private practice environment. Further studies are needed to investigate clinically relevant means to identify central pain hypersensitivity, oculomotor dysfunction, poor coping and depression, correlations and patterns among the diagnostic components of the DBCDG as well as inter-examiner reliability, validity and efficacy of treatment based on the DBCDG.</p
    corecore