189 research outputs found

    Are the Narrow Line Regions in Active Galaxies Dusty and Radiation Pressure Dominated?

    Get PDF
    The remarkable similarity between emission spectra of narrow line regions (NLR) in Seyfert Galaxies has long presented a mystery. In photoionization models, this similarity implies that the ionization parameter is nearly always the same, about U ~ 0.01. Here we present dusty, radiation-pressure dominated photoionization models that can provide natural physical insight into this problem. In these models, dust and the radiation pressure acting on it provide the controlling factor in moderating the density, excitation and surface brightness of photoionized NLR structures. Additionally, photoelectric heating by the dust is important in determining the temperature structure of the models. These models can also explain the coexistence of the low-, intermediate- and coronal ionization zones within a single self-consistent physical structure. The radiation pressure acting on dust may also be capable of driving the fast (~3000 km/s) outflows such as are seen in the HST observations of NGC 1068.Comment: 23 pages, 8 figures, Accepted by Ap

    Spatially extended absorption around the z=2.63 radio galaxy MRC 2025-218: outflow or infall?

    Get PDF
    We present an investigation into the absorber in front of the z=2.63 radio galaxy MRC 2025-218, using integral field spectroscopy obtained at the Very Large Telescope, and long slit spectroscopy obtained at the Keck II telescope. The properties of MRC 2025-218 are particularly conducive to study the nature of the absorbing gas, i.e., this galaxy shows bright and spatially extended Ly-alpha emission, along with bright continuum emission from the active nucleus. Ly-alpha absorption is detected across ~40x30 kpc^2, has a covering factor of ~1, and shows remarkably little variation in its properties across its entire spatial extent. This absorber is kinematically detached from the extended emission line region (EELR). Its properties suggest that the absorber is outside of the EELR. We derive lower limits to the HI, HII and H column densities for this absorber of 3x10^16, 7x10^17 and 2x10^18 cm^-2, respectively. Moreover, the relatively bright emission from the active nucleus has allowed us to measure a number of metal absorption lines: CI, CII, CIV, NV, OI, SiII, SiIV, AlII and AlIII. The column density ratios are most naturally explained using photoionization by a hard continuum, with an ionization parameter U~0.0005-0.005. Shocks or photoionization by young stars cannot reproduce satisfactorily the measured column ratios. Using the ratio between the SiII* and SiII column densities, we derive a lower limit of >10 cm^-3 for the electron density of the absorber. The data do not allow useful constraints to be placed on the metallicity of the absorber. We consider two possibilities for the nature of this absorber: the cosmological infall of gas, and an outflow driven by supernovae or the radio-jets.Comment: Accepted for publication in MNRA

    Ionized Absorbers in AGN: the Role of Collisional Ionization and Time-Evolving Photoionization

    Full text link
    In this paper we explore collisional ionization and time-evolving photoionization in the, X-ray discovered, ionized absorbers in Seyfert galaxies. These absorbers show temporal changes inconsistent with simple equilibrium models. We develop a simple code to follow the temporal evolution of non-equilibrium photoionized gas. As a result several effects appear that are easily observable; and which, in fact, may explain otherwise paradoxical behavior. Specifically we find that: 1) In many important astrophysical conditions pure collisional and photoionization equilibria can be distinguished with moderate spectral resolution observations, due to a strong absorption structure between 1 and 3 keV. 2) In time-evolving non-equilibrium photoionization models the response of the ionization state of the gas to sudden changes of the ionizing continuum is smoothed and delayed at low gas densities, even when the luminosity increases. 3) If the changes of the ionizing luminosity are not instantaneous, and the electron density is low enough (the limit depends on the average ionization state of the gas), the ionization state of the gas can continue to increase while the source luminosity decreases, so a maximum in the ionization state of a given element may occur during a minimum of the ionizing intensity (the opposite of the prediction of equilibrium models). 4) Different ions of different elements reach their equilibrium configuration on different time-scales. These properties are similar to those seen in several ionized absorbers in AGN, properties which had hitherto been puzzling. We applied these models to a high S/N ROSAT PSPC observation of the Seyfert 1 galaxy NGC 4051.Comment: 36 pages, 10 figures, accepted for publication on Apj, in pres

    Gas and Dust Emission from the Nuclear Region of the Circinus Galaxy

    Get PDF
    Simultaneous modeling of the line and continuum emission from the nuclear region of the Circinus galaxy is presented. Composite models which include the combined effect of shocks and photoionization from the active center and from the circumnuclear star forming region are considered. The effects of dust reradiation, bremsstrahlung from the gas and synchrotron radiation are treated consistently. The proposed model accounts for two important observational features. First, the high obscuration of Circinus central source is produced by high velocity and dense clouds with characteristic high dust-to-gas ratios. Their large velocities, up to 1500 km\s, place them very close to the active center. Second, the derived size of the line emitting region is well in agreement with the observed limits for the coronal and narrow line region of Circinus.Comment: 36 pages, LaTex (including 4 Tables and 9 figures), removed from Abstract To appear in "The Astrophysical Journal

    Spatial Resolution of High-Velocity Filaments in the Narrow-Line Region of NGC 1068: Associated Absorbers Caught in Emission?

    Get PDF
    Using the HST STIS spectrograph we have obtained a grid of [O III] and H-beta emission-line spectra at 0"05x0"19 and 60 km/s (FWHM) resolution that covers much of the NLR of NGC 1068. We find emitting knots that have blueshifted radial velocities up to 3200 km/s relative to galaxy systemic, are 70-150 pc NE of the nucleus and up to 40 pc from the radio jet, emit several percent of the NLR line flux but no significant continuum, span velocity extents of up to 1250 km/s but a small fraction of the sky seen from the nucleus, coincide with a region of enhanced IR coronal-line emission, and have ionized masses \sim200 Msun/ne4 (ne4=10^4 cm^{-3}). We argue that the blueshifted knots are ablata from disintegrating molecular clouds that are being photoionized by the AGN, and are being accelerated readiatively by the AGN or mechanically by the radio jet. In their kinematic properties, the knots resemble the associated absorbers seen projected on the UV continua of some AGN. Between 2"5-4"5 from the nucleus, emission is redshifted relative to systemic, a pattern that we interpret as gas in the galaxy disk being pushed away from us by the NE radio lobe.Comment: 13 pages LaTeX w/ convenient embedded EPS figs, scheduled for ApJ April 1/0

    Infrared spectroscopy of NGC 1068: Probing the obscured ionizing AGN continuum

    Get PDF
    The ISO-SWS 2.5-45 um infrared spectroscopic observations of the nucleus of the Seyfert 2 galaxy NGC 1068 (see companion paper) are combined with a compilation of UV to IR narrow emission line data to determine the spectral energy distribution (SED) of the obscured extreme-UV continuum that photoionizes the narrow line emitting gas in the active galactic nucleus. We search a large grid of gas cloud models and SEDs for the combination that best reproduces the observed line fluxes and NLR geometry. Our best fit model reproduces the observed line fluxes to better than a factor of 2 on average and is in general agreement with the observed NLR geometry. It has two gas components that are consistent with a clumpy distribution of dense outflowing gas in the center and a more extended distribution of less dense and more clumpy gas farther out that has no net outflow. The best fit SED has a deep trough at ~4 Ryd, which is consistent with an intrinsic Big Blue Bump that is partially absorbed by ~6x10^19 cm^-2 of neutral hydrogen interior to the NLR.Comment: 15 pp, 4 figures, ApJ accepte

    The Extended Line Region of 3C 299

    Full text link
    We present results of HST observations of the radio galaxy 3C 299. The broad-band F702W (R) and F555W (V) images (WFPC2/PC) show an elliptical galaxy, with a comet-like structure extending to the NE in the radio jet direction. The [OIII]λ\lambda5007 emission line map, shows a bi-conical structure centered on the nucleus, that overlaps the structure found in the broad-band filters. The radio core coincides with the center of the bi-conical structure and the radio axes are aligned with the direction of the cones. These data show clear evidence of a strong interaction between the radio jet and the NE morphology of the galaxy. We show evidence that this NE region is an ENLR; the line-ratio diagnostics show that models involving gas shocked by the radio-jet plus ionization from a precursor HII region, produced itself by the ionizing photons of the postshocked gas on the preshocked gas provide a good match to the observations. We investigate the spatial behavior of the ionizing parameter UU, by determining the [OIII]/[OII] line ratio which is sensitive to the change of the ionization parameter, and trace its behavior over the ENLR along the radio jet direction. We find that [OIII]/[OII] does not follow a simple dilution model, but rather that it is approximately constant over a large range of distance from the nucleus thus requiring a local source of ionization which seems to be compatible with the shock models driven by the radio jet.Comment: 17 pages, 9 Postscript figures, ApJ accepted, uses aaspp.st
    corecore