673 research outputs found

    Absorption Bands of Hydrogen Cyanide Gas in the Near Infrared

    Get PDF
    The absorption spectrum of gaseous hydrogen cyanide has been investigated by photographic methods in the region λ7000-9200. Two weak bands of very simple structure were found, having P and R branches but no Q branches. The band at λ7912 is apparently a harmonic of a fundamental band at 3.04μ, and the very weak band at λ8563 is a combination band. The hydrogen cyanide molecule is linear in the normal state, and has a moment of inertia I=18.79×10^-40 g·cm^2. The distance of separation of the carbon and nitrogen atoms is estimated to be 1.15×10^-8 cm. Hydrogen cyanide is discussed in regard to its three fundamental oscillations which have frequencies 3290, 2090, and 710, respectively, and in regard to its dissociation energy and dissociation products. The evidence requires a molecular structure represented by the formula HCN, and shows that the normal molecule is built from a normal hydrogen atom and a normal CN radical. The absorption of cyanogen gas has also been investigated in the photographic infrared, but no absorption bands could be detected

    An Absorption Band in Ethylene Gas in the Near Infrared

    Get PDF
    The absorption spectra of gaseous ethane and ethylene have been investigated by photographic methods in the region λλ6500-9500. In the case of ethane no absorption was found. In ethylene a rather strong band was found at λ8720 which has a structure resembling that predicted by H. H. Nielsen for the oscillation-rotation bands of a molecule with moments of inertia in the ratio 1.4:1:0.14. The following very provisional values for the moments of inertia of the ethylene molecule are given: Ax=31×10^-40, Ay=27×10^-40, Az=3.8×10^-40

    Implications of the E-selectin S128R mutation for drug discovery

    Get PDF
    The C-type lectin E-selectin mediates the rolling of circulating leukocytes on vascular endothelial cells during the inflammatory process. In numerous studies, the S128R mutation of the E-selectin was associated with cardiovascular and autoimmune diseases. There is evidence that the S128R E-selectin mutation leads to a loss in ligand specificity, thus increasing leukocyte recruitment. Apart from the natural tetrasaccharide ligand sialyl Lewisx (sLex), it has previously been proposed that non-fucosylated carbohydrates also bind to S128R E-selectin. To evaluate the therapeutic potential of the antagonism of the E-selectin mutant, ligand specificity was reinvestigated on a molecular basis. We determined the ligand specificity of wild-type and S128R E-selectin in a target-based competitive assay, a glycan array screen and cell-based binding assays under static and flow conditions. Regarding ligand-specificity, the binding properties of S128R E-selectin were identical to those of wt E-selectin, i.e., no mutant-specific binding of 3′-sialyl-N-acetyllactosamine, heparin, fetuin and K562 cells was observed. Additionally, the binding affinities of glycomimetic E-selectin antagonists were identical for wt and S128R E-selectin. Overall, the previous reports on carbohydrate ligand promiscuity of S128R E-selectin could not be confirme

    Neurophysiology

    Get PDF
    Contains reports on seven research projects.National Institutes of Health (Grant 5 RO1 EY01149-02)Bell Telephone Laboratories, Inc. (Grant)National Institutes of Health (Grant 1 TO1 EY00090-01

    Everybody’s Hacking:Participation and the Mainstreaming of Hackathons

    Get PDF
    Hackathons have become a popular tool for bringing people together to imagine new possibilities for technology. Despite originating in technology communities, hackathons have now been widely adopted by a broad range of organisations. This mainstreaming of hackathons means they encompass a very different range of attendees and activities than they once did, to the extent that some events billed as hackathons may involve no coding at all. Given this shift away from production of code, they might instead be seen as an increasingly popular participatory design activity, from which designers and researchers in HCI can learn. Through fieldwork at six hackathons that targeted non-technical communities, we identify the types of activities and contributions that emerge through these events and the barriers and tensions that might exist. In doing so, we contribute a greater understanding of hackathons as a growing phenomenon and as a potential tool for participatory research.Publisher PD

    Quantum effects in a superconducting glass model

    Full text link
    We study disordered Josephson junctions arrays with long-range interaction and charging effects. The model consists of two orthogonal sets of positionally disordered NN parallel filaments (or wires) Josephson coupled at each crossing and in the presence of a homogeneous and transverse magnetic field. The large charging energy (resulting from small self-capacitance of the ultrathin wires) introduces important quantum fluctuations of the superconducting phase within each filament. Positional disorder and magnetic field frustration induce spin-glass like ground state, characterized by not having long-range order of the phases. The stability of this phase is destroyed for sufficiently large charging energy. We have evaluated the temperature vs charging energy phase diagram by extending the methods developed in the theory of infinite-range spin glasses, in the limit of large magnetic field. The phase diagram in the different temperature regimes is evaluated by using variety of methods, to wit: semiclassical WKB and variational methods, Rayleigh-Schr\"{o}dinger perturbation theory and pseudospin effective Hamiltonians. Possible experimental consequences of these results are briefly discussed.Comment: 17 pages REVTEX. Two Postscript figures can be obtained from the authors. To appear in PR

    Self-trapping and stable localized modes in nonlinear photonic crystals

    Full text link
    We predict the existence of stable nonlinear localized modes near the band edge of a two-dimensional reduced-symmetry photonic crystal with a Kerr nonlinearity. Employing the technique based on the Green function, we reveal a physical mechanism of the mode stabilization associated with the effective nonlinear dispersion and long-range interaction in the photonic crystals.Comment: 4 pages (RevTex) with 5 figures (EPS

    Corn Yield Potential and Optimal Soil Productivity in Irrigated Corn/Soybean Systems

    Get PDF
    In 1999, an interdisciplinary research team at the University of Nebraska established a field experiment to (1) quantify and understand the yield potential of corn and soybean under irrigated conditions, (2) identify efficient crop management practices to achieve yields that approach potential levels, and (3) determine the energy use efficiency, global warming and soil C-sequestration potential of intensively managed corn systems. The experiment compares systems that represent different levels of management intensity expressed as combinations of crop rotation (continuous corn, corn-soybean), plant density (low, medium, high) and nutrient management (recommended best management vs. intensive management). Detailed measurements include soil nutrient dynamics and C balance, crop growth and development, nutrient uptake and components of yield of corn and soybean, radiation use efficiency, soil surface fluxes of greenhouse gases, root biomass, C inputs through crop residues, translocation of non-structural carbohydrates, and amount, composition and activity of the microbial biomass. Selected results for corn are presented

    Corn Yield Potential and Optimal Soil Productivity in Irrigated Corn/Soybean Systems

    Get PDF
    In 1999, an interdisciplinary research team at the University of Nebraska established a field experiment to (1) quantify and understand the yield potential of corn and soybean under irrigated conditions, (2) identify efficient crop management practices to achieve yields that approach potential levels, and (3) determine the energy use efficiency, global warming and soil C-sequestration potential of intensively managed corn systems. The experiment compares systems that represent different levels of management intensity expressed as combinations of crop rotation (continuous corn, corn-soybean), plant density (low, medium, high) and nutrient management (recommended best management vs. intensive management). Detailed measurements include soil nutrient dynamics and C balance, crop growth and development, nutrient uptake and components of yield of corn and soybean, radiation use efficiency, soil surface fluxes of greenhouse gases, root biomass, C inputs through crop residues, translocation of non-structural carbohydrates, and amount, composition and activity of the microbial biomass. Selected results for corn are presented

    Neurophysiology

    Get PDF
    Contains research objectives and summary of research on sixteen research projects.National Institutes of Health (Grant 5 TO1 EY00090-03)National Institutes of Health (Grant 3 RO1 EY01149-03S1)Bell Laboratories (Grant)National Institutes of Health (Grant 5 RO1 NS12307-02)National Institutes of Health (Grant K04 NS00010
    corecore