20 research outputs found

    Multiframe Super-Resolution of Color Images Based on Cross Channel Prior

    No full text
    Color images have a wider range of applications than gray images. There are two ways to extend the traditional super-resolution reconstruction method to color images: Super resolution reconstructs each channel of the color image individually; Change the RGB color bands into YCrCb color bands, then super-resolution reconstructs the luminance component and interpolates the chrominance components.These algorithms cannot effectively utilize the property that the edges and textures are similar in the RGB channels, and the results of those methods may lead to color artifacts. Aiming to solve these problems, we propose a new super-resolution method based on cross channel prior. First, a cross channel prior is proposed to describe the similarity of gradient in RGB channels. Then, a new super-resolution method is proposed for color images via combination of the cross channel prior and the traditional super-resolution methods. Finally, the proposed method reconstructs the color channels alternately. The experimental results show that the proposed method could effectively suppress the generation of color artifacts and improve the quality of the reconstructed images

    Spectrum Recovery Method for Interferometric Data

    No full text
    The interferometric data acquired by Fourier transform spectrometer was a betweenness which couldn't be used directly. For the successful application of the interferometric data, spectrum recovery processing must be adopted. The conventional method based on inverse Fourier transform was frequently used for spectrum recovery. According to the principle analysis of the interferometric data, the mixing model was induced, and the spectrum recovery method based on the mixing model of the interferometric data was presented. Finally, the computer simulation for these two methods mentioned above was implemented, and the recovered spectra were compared with the standard spectrum. The simulation results indicated that the spectral precision of the new method was better than the conventional method, which provided a new scheme for spectrum recovery

    Transcriptional Coactivation of Bone-Specific Transcription Factor Cbfa1 by TAZ

    Get PDF
    Core-binding factor 1 (Cbfa1; also called Runx2) is a transcription factor belonging to the Runt family of transcription factors that binds to an osteoblast-specific cis-acting element (OSE2) activating the expression of osteocalcin, an osteoblast-specific gene. Using the yeast two-hybrid system, we identified a transcriptional coactivator, TAZ (transcriptional coactivator with PDZ-binding motif), that binds to Cbfa1. A functional relationship between Cbfa1 and TAZ is demonstrated by the coimmunoprecipitation of TAZ by Cbfa1 and by the fact that TAZ induces a dose-dependent increase in the activity of osteocalcin promoter-luciferase constructs by Cbfa1. A dominant-negative construct of TAZ in which the coactivation domains have been deleted reduces osteocalcin gene expression down to basal levels. NIH 3T3, MC 3T3, and ROS 17/2.8 cells showed the expected nuclear localization of Cbfa1, whereas TAZ was distributed throughout the cytoplasm with some nuclear localization when transfected with either Cbfa1 or TAZ. Upon cotransfection by both Cbfa1 and TAZ, the transfected TAZ shows predominant nuclear localization. The dominant-negative construct of TAZ shows minimal nuclear localization upon cotransfection with Cbfa1. These data indicate that TAZ is a transcription coactivator for Cbfa1 and may be involved in the regulation of osteoblast differentiation

    反射转镜式干涉光谱仪光程差的一般表达式

    No full text
    The principle of reflecting rotating Fourier transform spectrometer was introduced in the present paper. Based on the Malus law and reflecting characteristic of cube corner, the optic path difference of reflecting rotating Fourier transform spectrometer was analyzed and calculated by choosing the center of rotating mirror as a reference point of the aplanatic surface of incidence beam and return beam. General expression of optic path difference at any time and maximal optic path difference of reflecting rotating Fourier transform spectrometer was presented. The factors that influence the maximal optic path difference and the period of optic path difference were analyzed. The results provide a theoretical guidance for design and manufacture of reflecting rotating Fourier transform spectrometer

    Investigating the Influence of the Diffraction Effect on Fourier Transform Spectroscopy with Bandpass Sampling

    No full text
    Fourier transform spectroscopy with bandpass sampling (BPS-FTS) increases the interferogram sampling step and reduces sampling frequency, thereby reducing system implementation difficulty. However, this technology has only been introduced in principle and lacks analysis of the actual system error. In this paper, we present a theoretical analysis of the optical system diffraction effect, derive the bandpass spectrum bandwidth and interferogram sampling step under the influence of the diffraction effect, and conduct modeling and a simulation analysis with and without the diffraction effect. Through simulation, we found that when the diffraction effect was considered, the relative deviation of the recovered spectrum from the input spectrum was 1.30%, and the spectral similarity was 0.9669. However, without considering the diffraction effect, the relative deviation of the recovered spectrum from the input spectrum was 6.23%, and the spectral similarity was only −0.0056. The simulation results demonstrate that the diffraction effect has a significant influence on BPS-FTS interferogram sampling and recovery spectra. The results of this study have reference significance for their technical realization of BPS-FTS

    Investigating the Influence of the Diffraction Effect on Fourier Transform Spectroscopy with Bandpass Sampling

    No full text
    Fourier transform spectroscopy with bandpass sampling (BPS-FTS) increases the interferogram sampling step and reduces sampling frequency, thereby reducing system implementation difficulty. However, this technology has only been introduced in principle and lacks analysis of the actual system error. In this paper, we present a theoretical analysis of the optical system diffraction effect, derive the bandpass spectrum bandwidth and interferogram sampling step under the influence of the diffraction effect, and conduct modeling and a simulation analysis with and without the diffraction effect. Through simulation, we found that when the diffraction effect was considered, the relative deviation of the recovered spectrum from the input spectrum was 1.30%, and the spectral similarity was 0.9669. However, without considering the diffraction effect, the relative deviation of the recovered spectrum from the input spectrum was 6.23%, and the spectral similarity was only −0.0056. The simulation results demonstrate that the diffraction effect has a significant influence on BPS-FTS interferogram sampling and recovery spectra. The results of this study have reference significance for their technical realization of BPS-FTS
    corecore