23 research outputs found

    A LOFAR census of non-recycled pulsars: extending below 80 MHz

    Get PDF
    We present the results from the low-frequency (40--78 MHz) extension of the first LOFAR pulsar census of non-recycled pulsars. We have used the Low-Band Antennas of the LOFAR core stations to observe 87 pulsars out of 158 that have been detected previously with the High-Band Antennas. Forty-three pulsars have been detected and we present here their flux densities and flux-calibrated profiles. Seventeen of these pulsars have not been, to our knowledge, detected before at such low frequencies. We re-calculate the spectral indices using the new low-frequency flux density measurements from the LOFAR census and discuss the prospects of studying pulsars at the very low frequencies with the current and upcoming facilities, such as NenuFAR

    Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    Get PDF
    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. Methods: The polarisation data presented in this paper have been calibrated for the geometric-projection and beam-shape effects that distort the polarised information as detected with the LOFAR antennas. We have used RM Synthesis to determine the amount of Faraday rotation in the data at the time of the observations. The ionospheric contribution to the measured Faraday rotation was estimated using a model of the ionosphere. To study the propagation effects, we have compared our low-frequency polarisation observations with archival data at 240, 400, 600, and 1400 MHz. Results: The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possibly an artefact of scattering. These variations are typically two orders of magnitude smaller than that observed at 1400 MHz by Noutsos et al. (2009), for a different sample of southern pulsars. In this paper we present a possible explanation for the difference in magnitude of this effect between the two frequencies, based on scattering. Finally, we have estimated the magnetospheric emission heights of low-frequency radiation from four pulsars, based on the phase lags between the flux-density and the PA profiles, and the theoretical framework of Blaskiewicz et al. (1991, ApJ, 370, 643). These estimates yielded heights of a few hundred km; at least for PSR B1133+16, this is consistent with emission heights derived based on radius-to-frequency mapping, but is up to a few times larger than the recent upper limit based on pulsar timing. Conclusions: Our work has shown that models, like magnetospheric birefringence, cannot be the sole explanation for the complex polarisation behaviour of pulsars. On the other hand, we have reinforced the claim that interstellar scattering can introduce a rotation of the PA with frequency that is indistinguishable from Faraday rotation and also varies as a function of pulse phase. In one case, the derived emission heights appear to be consistent with the predictions of radius-to-frequency mapping at 150 MHz, although this interpretation is subject to a number of systematic uncertainties

    Залежність внутрішнього електричного опору гумового троса кабелю від розриву кабелю

    No full text
    Problems. The introduction of steel reinforced concrete coatings of structures, in our opinion, is preceded by the development of methods for monitoring the state of cable-stayed ropes - creating safe conditions for long-term operation of structures.Проблематика. Використання сталевих залізобетонних покриттів споруд, на нашу думку, передує розробка способів контролю стану вантових канатів - створення безпечних умов для довготривалої експлуатації споруд
    corecore