107 research outputs found

    Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Get PDF
    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.Comment: 38 pages, 19 figures, 5 tables; author list changed; submitted to JINS

    B-flavor tagging at Belle II

    Get PDF
    We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom ( ) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb−1 , collected at the resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be εeff=(30.0±1.2(stat)±0.4(syst))% for a category-based algorithm and εeff=(28.8±1.2(stat)±0.4(syst))% for a deep-learning-based algorithm

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements

    Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

    Get PDF
    From April to July 2018, a data sample at the peak energy of the γ(4S) resonance was collected with the Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment. Using Bhabha and digamma events, we measure the integrated luminosity of the data sample to be (496.3 ± 0.3 ± 3.0) pb-1, where the first uncertainty is statistical and the second is systematic. This work provides a basis for future luminosity measurements at Belle II

    Reconstruction of BρνB \to \rho \ell \nu_\ell decays identified using hadronic decays of the recoil BB meson in 2019 -- 2021 Belle II data

    Full text link
    We present results on the semileptonic decays B0ρ+νB^0 \to \rho^- \ell^+ \nu_\ell and B+ρ0+νB^+ \to \rho^0 \ell^+ \nu_\ell in a sample corresponding to 189.9/fb of Belle II data at the SuperKEKB ee+e^- e^+ collider. Signal decays are identified using full reconstruction of the recoil BB meson in hadronic final states. We determine the total branching fractions via fits to the distributions of the square of the "missing" mass in the event and the dipion mass in the signal candidate and find B(B0ρ+ν)=(4.12±0.64(stat)±1.16(syst))×104{\mathcal{B}(B^0\to\rho^-\ell^+ \nu_\ell) = (4.12 \pm 0.64(\mathrm{stat}) \pm 1.16(\mathrm{syst})) \times 10^{-4}} and B(B+ρ0+ν)=(1.77±0.23(stat)±0.36(syst))×104{\mathcal{B}({B^+\to\rho^0\ell^+\nu_\ell}) = (1.77 \pm 0.23 (\mathrm{stat}) \pm 0.36 (\mathrm{syst})) \times 10^{-4}} where the dominant systematic uncertainty comes from modeling the nonresonant B(ππ)+νB\to (\pi\pi)\ell^+\nu_\ell contribution

    Precise Measurement of the D0^{0} and D+^{+} Lifetimes at Belle II

    Get PDF
    We report a measurement of the D0^{0} and D+^{+} lifetimes using D0^{0}→K^{-}π+^{+} and D+^{+}→K^{-}π+^{+}π+^{+} decays reconstructed in e+^{+}e^{-}cc\overline{cc} data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy e+^{+}e^{-} collider. The data, collected at center-of-mass energies at or near the Υ(4S) resonance, correspond to an integrated luminosity of 72 fb1^{-1}. The results, τ(D0^{0})=410.5±1.1(stat)±0.8(syst)  fs and τ(D+^{+})=1030.4±4.7(stat)±3.1(syst) fs, are the most precise to date and are consistent with previous determinations

    Measurements of the branching fractions for BKγB \to K^{*}\gamma decays at Belle II

    Get PDF
    This paper reports a study of BKγB \to K^{*}\gamma decays using 62.8±0.662.8\pm 0.6 fb1^{-1} of data collected during 2019--2020 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider, corresponding to (68.2±0.8)×106(68.2 \pm 0.8) \times 10^6 BBB\overline{B} events. We find 454±28454 \pm 28, 50±1050 \pm 10, 169±18169 \pm 18, and 160±17160 \pm 17 signal events in the decay modes B0K0[K+π]γB^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma, B0K0[KS0π0]γB^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma, B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, and B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, respectively. The uncertainties quoted for the signal yield are statistical only. We report the branching fractions of these decays: B[B0K0[K+π]γ]=(4.5±0.3±0.2)×105,\mathcal{B} [B^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma] = (4.5 \pm 0.3 \pm 0.2) \times 10^{-5}, B[B0K0[KS0π0]γ]=(4.4±0.9±0.6)×105,\mathcal{B} [B^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma] = (4.4 \pm 0.9 \pm 0.6) \times 10^{-5}, B[B+K+[K+π0]γ]=(5.0±0.5±0.4)×105, and\mathcal{B} [B^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma] = (5.0 \pm 0.5 \pm 0.4)\times 10^{-5},\text{ and} B[B+K+[KS0π+]γ]=(5.4±0.6±0.4)×105,\mathcal{B} [B^{+} \to K^{*+}[K^0_{\rm S}\pi^{+}]\gamma] = (5.4 \pm 0.6 \pm 0.4) \times 10^{-5}, where the first uncertainty is statistical, and the second is systematic. The results are consistent with world-average values

    Determination of Vub|V_{ub}| from untagged B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays using 2019-2021 Belle II data

    Full text link
    We present an analysis of the charmless semileptonic decay B0π+νB^0\to\pi^- \ell^+ \nu_{\ell}, where =e,μ\ell = e, \mu, from 198.0 million pairs of BBˉB\bar{B} mesons recorded by the Belle II detector at the SuperKEKB electron-positron collider. The decay is reconstructed without identifying the partner BB meson. The partial branching fractions are measured independently for B0πe+νeB^0\to\pi^- e^+ \nu_{e} and B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} as functions of q2q^{2} (momentum transfer squared), using 3896 B0πe+νeB^0\to\pi^- e^+ \nu_{e} and 5466 B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} decays. The total branching fraction is found to be (1.426±0.056±0.125)×104(1.426 \pm 0.056 \pm 0.125) \times 10^{-4} for B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays, where the uncertainties are statistical and systematic, respectively. By fitting the measured partial branching fractions as functions of q2q^{2}, together with constraints on the nonperturbative hadronic contribution from lattice QCD calculations, the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element VubV_{ub}, (3.55±0.12±0.13±0.17)×103(3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}, is extracted. Here, the first uncertainty is statistical, the second is systematic and the third is theoretical
    corecore