31 research outputs found

    δ-Opioid and dopaminergic processes in accumbens shell modulate the cholinergic control of predictive learning and choice

    Get PDF
    Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions

    Learning-related translocation of δ-opioid receptors on ventral striatal cholinergic interneurons mediates choice between goal-directed actions.

    Get PDF
    The ability of animals to extract predictive information from the environment to inform their future actions is a critical component of decision-making. This phenomenon is studied in the laboratory using the pavlovian-instrumental transfer protocol in which a stimulus predicting a specific pavlovian outcome biases choice toward those actions earning the predicted outcome. It is well established that this transfer effect is mediated by corticolimbic afferents on the nucleus accumbens shell (NAc-S), and recent evidence suggests that delta-opioid receptors (DORs) play an essential role in this effect. In DOR-eGFP knock-in mice, we show a persistent, learning-related plasticity in the translocation of DORs to the somatic plasma membrane of cholinergic interneurons (CINs) in the NAc-S during the encoding of the specific stimulus-outcome associations essential for pavlovian-instrumental transfer. Wefound that increased membrane DOR expression reflected both stimulus-based predictions of reward and the degree to which these stimuli biased choice during the pavlovian-instrumental transfer test. Furthermore, this plasticity altered the firing pattern of CINs increasing the variance of action potential activity, an effect that was exaggerated by DOR stimulation. The relationship between the induction of membrane DOR expression in CINs and both pavlovian conditioning and pavlovian-instrumental transfer provides a highly specific function for DOR-related modulation in the NAc-S, and it is consistent with an emerging role for striatal CIN activity in the processing of predictive information. Therefore, our results reveal evidence of a long-term, experience-dependent plasticity in opioid receptor expression on striatal modulatory interneurons critical for the cognitive control of action

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Inhibition of calcium channels by opioid- and adenosine-receptor agonists in neurons of the nucleus accumbens

    No full text
    1. The pharmacological effects of opioid- and adenosine-receptor agonists on neural signalling were investigated by measuring drug actions on barium current flowing through calcium channels in acutely-dissociated neurons of the rat nucleus accumbens (NAc). 2. Under whole-cell voltage clamp, opioids acted via μ, but not δ or κ, receptors to partially inhibit barium current. Mean inhibition was 35±2% (± s.e.mean, n= 33) for methionine-enkephalin and 37 ± 1% (n = 65) for the selective μ receptor agonist DAMGO, both measured at saturating agonist concentrations in neurons with diameter ≥ 20 μm. EC50 for DAMGO was 100 nM. Perfusion of naloxone reversed the current inhibition by DAMGO. 3. Adenosine also partially inhibited barium current in these neurons. Mean inhibition was 28 ± 2% (n=29) for adenosine and 33±3% (n=27) for the selective A1 receptor agonist N6CPA, both at saturating concentrations in neurons with diameter ≥20 μm. EC50 for N6CPA was 34 nM. Adenosine inhibition was reversed by perfusion of an A1 receptor antagonist, 8-cyclopentyl-l,3-dipropylxanthine, while the selective A2A receptor agonist, CGS 21680, had no effect. 4. Inhibition by opioids and adenosine was mutually occlusive, suggesting a converging pathway onto calcium channels. 5. These actions involved a G-protein-coupled mechanism, as demonstrated by the partial relief of inhibition by strong depolarization and by the application of N-ethylmaleimide or GTP-γ-S. 6. Inhibition of barium current by opioids had their greatest effect in large neurons, that is, in presumed interneurons. In contrast, opioid inhibition in neurons with diameter ≤15 μm was 11±2% (n=26) for methionine-enkephalin and 11±4% (n= 17) for DAMGO, both measured at saturating agonist concentrations. Adenosine inhibition in neurons with diameter ≤ 15 μm was 22±5% (n = 9). 7. These results implicate the interneurons as a locus for the modulation of the excitability of projection neurons in the NAc during the processes of addiction and withdrawal

    Expression of mRNA and functional alpha1-adrenoceptors that suppress the GIRK conductence in adult rat locus coeruleus neurones

    No full text
    1 Locus coeruleus neurons in adult rats express binding sites and mRNA for α 1-adrenoceptors even though the depolarizing effect of α 1-adrenoceptor agonists on neonatal neurons disappears during development. 2 In this study intracellular microelectrod

    β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons

    No full text
    BACKGROUND AND PURPOSE: Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. EXPERIMENTAL APPROACH: μ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa ) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and β-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. KEY RESULTS: MOPr inhibition of ICa in PAG neurons was unaffected by β-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT β-arrestin-2 knockouts. However, β-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. CONCLUSIONS AND IMPLICATIONS: In β-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by β-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in β-arrestin-2 knockouts. LINKED ARTICLES: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.NHMRC Grant Numbers: 1011979 & 104596

    Functional coupling of mu-receptor-Galphai-tethered proteins in AtT20 cells.

    No full text
    International audienceOpioid efficacy on mu-receptor may be influenced by various Gi/o-G-protein subunits interacting with intracellular face of receptor. Pertussis toxin-insensitive Galphai1 and Galphai2 subunits tethered with mu-receptor were stably transfected into AtT20 cells to (i) determine coupling of different alpha-subunits on opioid efficacy, and (ii) determine coupling to downstream effectors, for example, calcium and potassium channels. After pertussis toxin, stimulation of [35S]GTP-gamma-S incorporation persisted. Both constructs were able to couple to native calcium and potassium channels, with endomorphins 1 and 2 equally effective. However, pertussis toxin abolished opioid actions on calcium and potassium channels suggesting strong coupling to endogenous G-proteins, and that differences in coupling efficacy to Galphai1 and Galphai2 previously observed are restricted to initial step of signaling cascade

    The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum.

    No full text
    The capacity for goal-directed action depends on encoding specific action-outcome associations, a learning process mediated by the posterior dorsomedial striatum (pDMS). In a changing environment, plasticity has to remain flexible, requiring interference between new and existing learning to be minimized, yet it is not known how new and existing learning are interlaced in this way. Here we investigated the role of the thalamostriatal pathway linking the parafascicular thalamus (Pf) with cholinergic interneurons (CINs) in the pDMS in this process. Removing the excitatory input from Pf to the CINs was found to reduce the firing rate and intrinsic activity of these neurons and produced an enduring deficit in goal-directed learning after changes in the action-outcome contingency. Disconnection of the Pf-pDMS pathway produced similar behavioral effects. These data suggest that CINs reduce interference between new and existing learning, consistent with claims that the thalamostriatal pathway exerts state control over learning-related plasticity

    Striatal cholinergic interneurons display activity-related phosphorylation of ribosomal protein S6

    Get PDF
    Cholinergic interneurons (CINs) provide the main source of acetylcholine to all striatal regions, and strongly modulate dopaminergic actions through complex regulation of pre- and post-synaptic acetylcholine receptors. Although striatal CINs have a well-defined electrophysiological profile, their biochemical properties are poorly understood, likely due to their low proportion within the striatum (2-3%). We report a strong and sustained phosphorylation of ribosomal protein S6 on its serine 240 and 244 residues (p-Ser-S6rp), a protein integrant of the ribosomal machinery related to the mammalian target of the rapamycin complex 1 (mTORC1) pathway, which we found to be principally expressed in striatal CINs in basal conditions. We explored the functional relevance of this cellular event by pharmacologically inducing various sustained physiological activity states in CINs and assessing the effect on the levels of S6rp phosphorylation. Cell-attached electrophysiological recordings from CINs in a striatal slice preparation showed an inhibitory effect of tetrodotoxin (TTX) on action potential firing paralleled by a decrease in the p-Ser-S6rp signal as detected by immunofluorescence after prolonged incubation. On the other hand, elevation in extracellular potassium concentration and the addition of apamin generated an increased firing rate and a burst-firing activity in CINs, respectively, and both stimulatory conditions significantly increased Ser-S6rp phosphorylation above basal levels when incubated for one hour. Apamin generated a particularly large increase in phosphorylation that was sensitive to rapamycin. Taken together, our results demonstrate for the first time a link between the state of neuronal activity and a biochemical signaling event in striatal CINs, and suggest that immunofluorescence can be used to estimate the cellular activity of CINs under different pharmacological and/or behavioral conditions
    corecore