4,616 research outputs found

    Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems

    Get PDF
    In this paper, the identification of a class of multiscale spatio-temporal dynamical sys-tems, which incorporate multiple spatial scales, from observations is studied. The proposed approach is a combination of Adams integration and an orthogonal least squares algorithm, in which the multiscale operators are expanded, using polynomials as basis functions, and the spatial derivatives are estimated by finite difference methods. The coefficients of the polynomials can vary with respect to the space domain to represent the feature of multiple scales involved in the system dynamics and are approximated using a B-spline wavelet multi-resolution analysis (MRA). The resulting identified models of the spatio-temporal evolution form a system of partial differential equations with different spatial scales. Examples are provided to demonstrate the efficiency of the proposed method

    A cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighbourhood

    Get PDF
    An important step in understanding crystal growth patterns involves simulation of the growth processes using mathematical models. In this paper some commonly used models in this area are reviewed, and a new simulation model of dendritic crystal growth based on the Moore and von Neumann neighbourhoods in cellular automata models are introduced. Simulation examples are employed to find ap- propriate parameter configurations to generate dendritic crystal growth patterns. Based on these new modelling results the relationship between tip growth speed and the parameters of the model are investigated

    Identification of N-state spatio-temporal dynamical systems using a polynomial model

    Get PDF
    A multivariable polynomial model is introduced to describe n-state spatio-temporal systems. Based on this model, a new neighbourhood detection and transition rules determination method is proposed. Simulation results illustrate that the new method performs well even when the patterns are corrupted by static and dynamical noise

    Consistent parameter identification of partial differential equation models from noisy observations

    Get PDF
    This paper introduces a new residual-based recursive parameter estimation algorithm for linear partial differential equations. The main idea is to replace unmeasurable noise variables by noise estimates and to compute recursively both the model parameter and noise estimates. It is proven that under some mild assumptions the estimated parameters converge to the true values with probability one. Numerical examples that demonstrate the effectiveness of the proposed approach are also provided

    Accurate robot simulation

    Get PDF
    Robot simulators are valuable tools for researchers to develop control code in a fast and efficient manner without spending time setting up physical experiments. Most simulators, however, do not model the real world accurately. As a consequence, when a program is run on a real robot it may behave differently from when run in simulation. In this paper we present a method of developing a robot simulator that models the operation of a real robot in a real environment accurately, using real robot data and system identification to construct the simulator's model

    Multiscale modelling and identification of a class of lattice dynamical systems

    Get PDF
    A new multiscale modelling framework is introduced to describe a class of lattice dynamical systems (LDS), which can be used to model natural systems involving multiphysics and the multi-resolution facets of a single spatio-temporal dynamical system. The emphasis of the paper is on the multi-resolution facets, with respect to the spatial domain, of a single spatio-temporal dynamical system by using a Haar wavelet decomposition technique. A multiscale identification method for such systems is then proposed, which can be considered as a dual of the multigrid method. The proposed identification method involves three steps: the system dynamics at some specific scale of interest are identified using a recursive least-squares algorithm; the residual is then projected onto coarser scales using Haar wavelets and the parameter estimation errors are minimized; and finally a coarse correction procedure is applied to the original scale. An outstanding advantage of the proposed identification method is a saving on the computational costs. Numerical examples are provided to demonstrate the application of the proposed new approach

    Multiscale identification of spatio-temporal dynamical systems using a wavelet multiresolution analysis

    Get PDF
    In this paper, a new algorithm for the multiscale identification of spatio-temporal dynamical systems is derived. It is shown that the input and output observations can be represented in a multiscale manner based on a wavelet multiresolution analysis. The system dynamics at some specific scale of interest can then be identified using an orthogonal forward leastsquares algorithm. This model can then be converted between different scales to produce predictions of the system outputs at different scales. The method can be applied to both multiscale and conventional spatio-temporal dynamical systems. For multiscale systems, the method can generate a parsimonious and effective model at a coarser scale while considering the effects from finer scales. Additionally, the proposed method can be used to improve the performance of the identification when measurements are noisy. Numerical examples are provided to demonstrate the application of the proposed new approach

    Agriculture and poverty in the Kentucky mountains: Beech Creek and Clay County, 1850-1910

    Get PDF
    The poverty of Appalachia is not the product of modernization. Nor is it a unique phenomenon. An examination of the history of farming in Beech Creek, Kentucky, reveals that this community, which was prosperous in 1860, owed its fall into poverty to a number of factors that had impoverished other regions: the high rate of population growth among the families living in the area, the division and re-division of the limited land to accommodate the new generations of families, the need to use woodland for agriculture before reforestation succeeded in restoring the old soil to its original productivity, and slow economic growth resulting from the emphasis on subsistence rather than commercial agriculture. The same pattern had occurred in New England in the eighteenth century. What was unique in Appalachia was that subsistence farming lasted so long, owing to growing isolation from the rest of the country as the area was bypassed in the construction of modern means of transportation.

    Multiscale time series modelling with an application to the relativistic electron intensity at the geosynchronous orbit

    Get PDF
    In this paper, a Bayesian system identification approach to multiscale time series modelling is proposed, where multiscale means that the output of the system is observed at one(coarse) resolution while the input of the system is observed at another (One) resolution. The proposed method identifies linear models at different levels of resolution where the link between the two resolutions is realised via non-overlapping averaging process. This averaged time series at the coarse level of resolution is assumed to be a set of observations from an implied process so that the implied process and the output of the system result in an errors-in-variables ARMAX model at the coarse level of resolution. By using a Bayesian inference and Markov Chain Monte Carlo (MCMC) method, such a modelling framework results in different dynamical models at different levels of resolution at the same time. The new method is also shown to have the ability to combine information across different levels of resolution. An application to the analysis of the relativistic electron intensity at the geosynchronous orbit is used to illustrate the new method

    Model term selection for spatio-temporal system identification using mutual information

    Get PDF
    A new mutual information based algorithm is introduced for term selection in spatio-temporal models. A generalised cross validation procedure is also introduced for model length determination and examples based on cellular automata, coupled map lattice and partial differential equations are described
    • …
    corecore