
This is a repository copy of Multiscale time series modelling with an application to the 
relativistic electron intensity at the geosynchronous orbit.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74651/

Monograph:
Guo, L.Z., Billings, S.A., Coca, D. et al. (1 more author) (2009) Multiscale time series 
modelling with an application to the relativistic electron intensity at the geosynchronous 
orbit. Research Report. ACSE Research Report no. 999 . Automatic Control and Systems 
Engineering, University of Sheffield 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 

 

Multiscale time series modelling with an 

application to the relativistic electron intensity 

at the geosynchronous orbit 
 

 

 

 

 

Guo, L. Z.,  Billings, S. A., Coca, D., and Balikhin, M.  

 

 

 

 

 
 

 

 

 

 

 

 

 
Department of Automatic Control and Systems Engineering 

University of Sheffield 

Sheffield, S1 3JD 

UK 

 

 

 

 

Research Report No. 999 

September 2009 

PDF created with pdfFactory Pro trial version www.pdffactory.com



Multiscale time series modelling with an

application to the relativistic electron intensity

at the geosynchronous orbit

L. Z. Guo, S. A. Billings, D. Coca, and M. Balikhin

Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield S1 3JD, UK

Abstract

In this paper, a Bayesian system identification approach to multiscale time series mod-
elling is proposed, where multiscale means that the output of the system is observed at one
(coarse) resolution while the input of the system is observed at another (fine) resolution.
The proposed method identifies linear models at different levels of resolution where the
link between the two resolutions is realised via non-overlapping averaging process. This
averaged time series at the coarse level of resolution is assumed to be a set of observations
from an implied process so that the implied process and the output of the system result in
an errors-in-variables ARMAX model at the coarse level of resolution. By using a Bayesian
inference and Markov Chain Monte Carlo (MCMC) method, such a modelling framework
results in different dynamical models at different levels of resolution at the same time. The
new method is also shown to have the ability to combine information across different levels
of resolution. An application to the analysis of the relativistic electron intensity at the
geosynchronous orbit is used to illustrate the new method.

1 Introduction

In time series modelling and analysis, it is sometimes worthwhile to investigate the underlying
processes from different levels of resolution. This need may arise from the fact that in some cases
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the measurements can only be made at different levels of resolution (e.g. hourly and daily) due
to a variety of technical limitations. The data obtained as such are of a multiple nature. Another
reason may come from the following consideration. Whilst investigating the data at a single level
of resolution may often be satisfactory, such an approach may not be able to capture all the
features of the underlying processes and some important structures of the signals may exist at
different levels of resolution. It follows that the levels at which the observations and inferences are
made may lead to different conclusions with respect to the dynamics of the underlying processes.
These considerations resulted in a series of studies on multiscale time series modelling methods
including temporal aggregation (Drost and Nijman 1993), reconstruction of time series based on
higher order multiscale statistics (Nawrotha and Peinke 2006), multiscale and hidden resolution
time series models (Ferreira and Lee 2007), and Bayesian methods (Oigard, Rue, and Godtliebsen
2006). In this paper, a new Bayesian system identification approach is proposed to tackle the
multiscale data modelling problem, which can be considered as an extension of the multiscale
and hidden resolution time series model given by Ferreira and Lee (2007).

The multiscale problem studied here is the case where the output and input of a system are
measured at different levels of resolution; where the output is at a coarse temporal scale while
the input is at a fine temporal scale. It is assumed that the input at the fine scale is subjected
to a dynamical process while at the coarse level the output follows an ARMAX model. The
actual input at the coarse level is subjected to an implied dynamical model. The link across
the two resolutions is realised via a non-overlapping averaging process. The averaged values
are considered as observations from the implied input process at the coarse level. In this way,
the implied input process and the output of the system result in an errors-in-variables ARMAX
model at the coarse level of resolution. The objective of the paper is to estimate the parameters
of the models at different levels of resolution and to produce predictions for the whole system. By
using a Bayesian inference and Markov Chain Monte Carlo (MCMC) method, such a modelling
framework results in different dynamical models at different levels of resolution at the same time.
Jeffrey’s rule of conditioning is used to ensure consistent modelling of the time series across the
different levels of resolution. The method has the ability to combine information across different
levels of resolution and to produce integrated modelling and prediction.

One of the motivations of the study, arises from an application related to the analysis of the
relativistic electron intensity at a geosynchronous orbit. The real data were obtained from
National Geophysical Data Centre, USA, where the relativistic electron flux was measured daily
and the solar wind velocity and the geomagnetic index SymH were measured minutely/hourly.
Relativistic electrons in the Earth’s inner magnetosphere are of great importance from both
scientific and practical standpoints and the flux in the outer radiation belt exhibits a highly
dynamic behaviour, which has been identified to be most relevant to the solar wind velocity and
SymH index, and is therefore an important influence on space weather. Therefore, in this paper
an ARMAX model of the relativistic electron intensity, with the flux as output, and the solar
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wind velocity and the SymH index as input, is analysed by using the new algorithm.

The paper begins in section 2 with a formulation of the problem, followed by a detailed discussion
of the likelihood function and posterior probability densities. Section 3 presents the inference and
prediction problem. Section 4 illustrates the proposed approach using the example mentioned
earlier. Finally conclusions are drawn in section 5.

2 Problem description

2.1 Basic framework

In the section, the problem will be formulated within a general framework. The problem begins
with two univariate time series (it is straightforward to extend the analysis to multivariate time
series) observed at different temporal scales: ys, s = 1, 2, · · · and xt, t = 1, 2, · · ·, where ys is
assumed to be the output of a underlying dynamical system while xt is assumed to be the input.
To specify the difference between the temporal scales, it is also assumed that the time-indexes
s and t are related together within a window of length l > 0, a positive integer. This means
the output series ys is l times coarser than the input series xt, that is, in this time-indexing the
sequence of inputs and outputs ordered in the way how they are observed is

x1, x2, · · · , xl, y1, xl+1, xl+2, · · · , x2l, y2, · · · . (1)

For any ny > 0 and nx = l × ny, denote x1:nx
= (x1, x2, · · · , xnx

)T and y1:ny
= (y1, y2, · · · , yny

)T

the observations up to time instant nx. Although the problem can be investigated within a mixed
temporal scale framework such as given by Nawrotha and Peinke (2006), in this paper it is studied
under a general multiple scale modelling framework motivated by Ferreira, et al (2006). This
multiple scale framework assumes that the dynamics at different scales are subjected to different
models, between which the link is built via a link equation of the following form

us = uo
s + µs (2)

in which µs is noise and the known variable uo
s = f(x(s−1)l+1, x(s−1)l+2, · · · , xsl), where f can take

many different forms such as maximising and averaging. Note that in this way the influence of
the input xt at the fine level on the output ys at the coarse level is realised via the intermediate
quantity us at the coarse level. It follows that the modelling problem of the pair (us, ys), forming
an input-output pair of the underlying dynamical process at the coarse level, is of interest to us.
Apart from this coarse level model, the time series xt, t = 1, 2, · · · , is assumed to be subjected
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to a dynamical model which is of interest to us also. At the same time, it is interesting to
investigate what impact it will have on both levels if us, s = 1, 2, · · · , follows a dynamical model.
The objective of the paper is to identify these three models from the multiscale observations ys

and xt by using a Bayesian method.

Assume that the pair ys, us, s = 1, 2, · · · follows an Errors-In-Variables (EIV) ARMAX model as
follows

ys = G(q−1)us + H(q−1)ws =
B(q−1)

A(q−1)
us +

C(q−1)

A(q−1)
ws (3)

where A(q−1), B(q−1), and C(q−1) are polynomials in the backshift operator q−1

A(q−1) = 1 + a1q
−1 + · · · + ana

q−na

B(q−1) = b0q
−1 + b1q

−2 + · · · + bnb
q−nb

C(q−1) = 1 + c1q
−1 + · · · + cnc

q−nc (4)

and the error ws
i.i.d
∼ N(0, σ2

y), N denotes the normal distribution. y and u are the output
and input of the process respectively. The fact that the input us comes from a process whose
observations are the averaged values of the measurement from a finer level justifies this is an EIV
problem. Assume also that time series xt, t = 1, 2, · · · follows an AR(1) model as follows

xt = φxxt−1 + εt (5)

where εt
i.i.d
∼ N(0, σ2

x). Thus for all nx > 0, p(x1:nx
) is an nx-dimensional stationary distribution

p(x1:nx
) = N(x1:nx

|0, Vx) (6)

where x1:nx
= (x1, · · · , xnx

)T , and 0 is the zero-vector and Vx = (σ2
xφ

|i−j|
x /(1−φ2

x))ij is an nx×nx

covariance matrix.

The link (2) in this paper is assumed to be averaging. Let uo
s = f(x(s−1)l+1, x(s−1)l+2, · · · , xsl) =

1/l
∑l

i=1 x(s−1)∗l+i be the non-overlapping averaged value of l consecutive values of x over the

window l and it is assumed that µs
i.i.d
∼ N(0, τ). Let uo

1:nu
= (uo

1, · · · , u
o
nu

)T . If us are conditionally
independent with τ , the link between these two different scales is then given by the following
relationship

p(u1:nu
|uo

1:nu
, x1:nx

) = p(u1:nu
|x1:nx

) = N(u1:nu
|Ax1:nx

, Γ) (7)
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where nu× l = nx, u1:nu
= (u1, · · · , unu

)T , and Γ = τI. Note that A is a sparse matrix whose non-
zero elements are all 1/l of which the row i are those in columns (i−1)l +1, and p(u1:nu

|uo
1:nu

) =
p(u1:nu

|x1:nx
).

Now it is assumed that the unobserved input variable us at a coarse level follows an implied
AR(1) process

us = φuus−1 + ηs (8)

where ηs
i.i.d
∼ N(0, σ2

u). Thus for all nu > 0, q(u1:nu
) is the implied nu-dimensional stationary

distribution

q(u1:nu
) = N(u1:nu

|0, Qu) (9)

where u1:nu
= (u1, · · · , unu

)T , and 0 is the zero-vector and Qu = (σ2
uφ

|i−j|
u /(1−φ2

u))ij is an nu×nu

covariance matrix.

The following assumptions are set to make the problem well defined.

Assumption 1. The na, nb, nc values and the link matrix A are known (Model).

Assumption 2. A(q−1), and C(q−1) have no common roots.

Assumption 3. A(q−1), and C(q−1) are asymptotically stable polynomials (Stationarity and
invertibility).

Assumption 4. Zero initial conditions for all the involved processes are assumed, which can be
justified by the discussion given by Peterka (1981). A similar discussion about non-zero initial
conditions can be made following Chib and Greenberg (1994) if necessary.

2.2 Implied processes induced by us

From (7), the marginal densities of u1:nu
can be calculated as

p(u1:nu
) =

∫

p(u1:nu
|x1:nx

) × p(x1:nx
)dx1:nx

= N(0, AT VxA + Γ) (10)

Obviously, due to the assumption of the implied process (8), the involved probability densities
may not be compatible. According to Jeffrey’s rule of conditioning, the revised probability
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distribution must not change the conditional probability degrees of any random variable given
uncertain variable u1:nu

, which means

q(x1:nx
|u1:nu

) = p(x1:nx
|u1:nu

)

q(y1:ny
|u1:nu

) = p(y1:ny
|u1:nu

) (11)

The induced implied process at the fine level has been discussed in detail in Ferreira, et al (2006),
which are shown in here as

q(x1:nx
) =

∫

p(x1:nx
|u1:nu

) × q(u1:nu
)du1:nu

= N(x1:nx
|0, Qx) (12)

with Qx = Vx − B(W − Qu)B
T where W = AVxA

T + Γ and B = VxA
T W−1.

The induced implied process at the coarse level is given by the following formula

q(y1:ny
) =

∫

p(y1:ny
|u1:nu

) × q(u1:nu
)du1:nu

(13)

Under the assumptions that H(q−1) is monic, ws is independent, and C(q−1) is asymptotically
stable, the mean squares optimal one-step ahead predictor of ys, in the sense that ŷs|s−1 =
E[ys|Fs−1] (Fs−1 is the sub-σ algebra generated by data up to time s − 1), is

ŷs|s−1 = H−1(q−1)G(q−1)us + (1 − H−1(q−1))ys (14)

and we have

ys = ŷs|s−1 + ws (15)

which is generally used to calculate the likelihood. Equation (14) can be written alternatively as
(Lemma 7.4.1, Goodwin and Sin 1984)

ys = ŷs|s−1 + ws

C(q−1)ŷs|s−1 = B′(q−1)us−1 + C ′(q−1)ys−1 (16)

with B′(q−1) = qB(q−1) and C ′(q−1) is the unique n − 1th order polynomial satisfying
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C(q−1) = A(q−1) + q−1C ′(q−1) (17)

It follows that

p(y1:ny
|u1:nu

) = N(y1:ny
|ŷ1:ny

, σ2
yI) (18)

where ŷ1:ny
= (ŷ1|0, · · · , ŷny |ny−1

)T so that

q(y1:ny
) =

∫

p(y1:ny
|u1:nu

) × q(u1:nu
)du1:nu

∝
∫

N(y1:ny
|ŷ1:ny

, σ2
yI) × N(u1:nu

|0, Qu)du1:nu
(19)

Therefore, the resulting probability distribution q(y1:ny
) is also a normal distribution.

3 The Bayesian approach

3.1 Inference

When using the Bayesian approach in our problem, the measured data available for inference
are (y1:ny

, x1:nx
), nx = l × ny while the unknowns are those parameters a1, · · · , ana

, b0, · · · , bnb
,

c1, · · · , cnc
, φx, φu, σ

2
y , σ

2
x, σ

2
u, τ and the implied process u1:nu

. The inference about the unknowns is
made via posterior probability densities conditional on the measured data. It should be pointed
out that conditional on the implied process, the inference about the unknowns can be done
separately at two different temporal levels. At the fine level, the parameters are α = (φx, σ

2
x)

while at the coarse level the unknowns are β = (a1, · · · , ana
, b0, · · · , bnb

, c1, · · · , cnc
, φu, σ

2
y , σ

2
u, τ)

and u1:nu
.

By considering uo
1:nu

as the observations of the implied process us at the coarse level, the likeli-
hood function for the coarse level is then p(y1:ny

, uo
1:nu

|β, u1:nu
). Instead of calculating the exact

likelihood function, a spectral factorisation method is adopted in this paper to obtain an ap-
proximation of the likelihood function for this EIV ARMAX model (e.g. Soderstrom and Stoica
1989). Substituting (8) into (3) and (2) yields

(1 − φuq
−1)A(q−1)ys = B(q−1)ηs + (1 − φuq

−1)C(q−1)ws

(1 − φuq
−1)uo

s = ηs + (−1 + φuq
−1)µs (20)

Letting
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zs =

(

(1 − φuq
−1)A(q−1)ys

(1 − φuq
−1)uo

s

)

(21)

then zs is an MA process so that by the spectral factorisation theorem there exists a unique
matrix S(q−1) such that

zs = S(q−1)ǫs (22)

where Eǫs1
ǫT
s2

= Λδs1,s2
, Λ > 0 and δi,j Kronecker delta. The approximation of the likelihood

function is then given by

p(y1:ny
, uo

1:nu
|β, u1:nu

) ≈ (2π)−ny |Λ)|−ny/2 exp(−
1

2

ny
∑

s=1

ǫT
s Λ−1ǫs) (23)

It follows that the full conditional distributions at the coarse level are then

q(u1:nu
|β, y1:nx

, uo
1:nx

) ∝ p(y1:ny
, uo

1:nu
|β, u1:nu

) × q(u1:nu
|β)

p(β|u1:nu
, y1:nx

, uo
1:nx

) ∝ p(y1:ny
, uo

1:nu
|β, u1:nu

) × p(β|u1:nu
) (24)

At the fine level, the joint posterior density for the unknown parameters α, p(α|x1:nx
, u1:nu

), is
given by

p(α|x1:nx
, u1:nu

) ∝ q(u1:nu
|α, x1:nx

) × p(α|x1:nu
) (25)

Due to the difficulty in computing these full conditional distributions directly, the simulation of
the unknowns will be conducted via the Gibbs sampler and the Metropolis-Hastings proposal
after specifying some a priori chosen prior probability densities.

3.2 Prediction

The next objective of the paper is about the prediction problem. It is interesting to see that
the prediction problem can be divided into two different cases: synchronous prediction and
asynchronous prediction, due to the characteristics of the multiple scale.

1) Synchronous prediction scheme. This scheme uses the data up to nx to produce a prediction
for the quantities concerned. To perform the prediction, it is sufficient to generate a sample from
the predictive distributions. The following predictive distributions are of interest
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p(yny+1|u1:nu
, y1:ny

)

q(unu+1|u1:nu
, x1:nx

) = q(unu+1|u1:nu
, xnx

)

p(xnx+1|u1:nu
, x1:nx

) or p(xnx+1:nx+l|u1:nu
, x1:nx

) (26)

where the first one is to forecast the system output of the coarse level at ny +1 given observations
(input and output) up to ny, the second one is to simulate the implied process at nu + 1 given
observations from the fine level up to nx, and finally the third one is to generate the forecast of
the dynamics at a fine level, given observations up to the last time instant.

2) Asynchronous prediction scheme. This scheme is to use the data up to ny at the coarse level
to produce a prediction for the quantity in the fine level. This is the advantage of the multiscale
method, which enables the forecast at the fine level to be guided by the forecast at the coarse
level so as to reduce the forecasting error. The following relationship

p(xnx−l+1:nx
|u1:nu

, x1:nx−l) = p(xnx−l+1:nx
|unu

, xnx−l) (27)

indicates that the forecast at some point at fine level can be given by considering the effect from
the coarse level prediction ahead of this point.

The derivation of some of the relations can be found in (Ferreira, West, Lee, and Higdon 2006).

4 Applications to the relativistic electron intensity at a

geosynchronous orbit

Relativistic electrons in the Earth’s inner magnetosphere are very important, where the flux
in the outer radiation belt (L > 3.5) exhibits highly dynamical behaviour. High relativistic
electrons on orbiting satellites can cause electric discharges across internal satellite components,
which in turn leads to possible satellite damage or failures. Therefore it is crucial to be able
to understand the mechanisms of electron transport and acceleration, and the way how they
depend on other processes extending from the solar wind into the inner magnetosphere. Ob-
viously, developing a physical model is highly desirable and has been a challenge. To obtain
a model from observations at a geosynchronous orbit(GO), there are many methods available
now such as moving average (MA) linear filters driven with the Kp index (Nagai 1988), MA
driven with the Kp index, AE index, and solar wind velocity v (Baker, McPherron, Cayton,
and Klebesadel 1990), a nonlinear method (Rodgersa, Clucasa, Dyera, and Smitha 2003), and a
delay embedding method (Ukhorskiy, Sitnov, Sharma, Anderson, Ohtani, and Lui 2004). While
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a general correlation between the growth of relativistic electron flux at a geosynchronous orbit
and geomagnetic activity is well established, the existing investigations into relativistic electron
flux have revealed that the effectiveness of the influence of magnetic storms on electron fluxes
strongly depends on the geomagnetic index SymH, solar wind velocity, and other geomagnetic
indices, and good results in predicting electron fluxes in GOs is obtained when they are used as
input data for forecast models.

In this application, the proposed multiple scale Bayesian modelling approach is applied and the
parameters of the model are derived from the correlated data. The output of the system used
was the relativistic electron intensity, the daily time series of the omnidirectional flux (Je) of
> 2 MeV electrons from GOES 7 and 8 satellites for years 1995 and 1996 to 2000, respectively.
The input of the system was chosen to be solar wind velocity v and geomagnetic indices SymH,
obtained hourly from Kyoto World Data Centre from 1995 to 2000. The different temporal
scales in the data here motivate our method. Obviously, this is a two input and one output
problem. The model at the coarse level in this simulation was chosen as ARMAX(1,1). The prior
distributions of the involved quantities were chosen as: a1 ∼ N(ma, Sa), b0 ∼ N(mb0 , Sb0), b1 ∼
N(mb1 , Sb1), φx1

, φx2
∼ N(mφx

, Sφx
), σ2

x1
, σ2

x2
∼ IG(νσx

/2, νσx
sσx

/2), φu1
, φu2

∼ N(mφu
, Sφu

),
σ2

u1
, σ2

u2
∼ IG(νσu

/2, νσu
sσu

/2), σ2
y ∼ IG(νσy

/2, νσy
sσ/2), τ1, τ2 ∼ IG(ντ/2, ντsτ/2), and u1:nu

∼
U(max(−1, uo

1:nu
− δ), min(1, uo

1:nu
+ δ)), where the hyperparameters were ma1

= 0, Sa1
= 1000,

mb0 = 0, Sb0 = 1000, mb1 = 0, Sb1 = 1000, mφx
= 0, Sφx

= 1000, νσx
= 0.001, νσx

sσx
= 0.001,

mφu
= 0, Sφu

= 1000, νσu
= 0.001, νσu

sσu
= 0.001, νσy

= 0, νσy
sσy

= 0.001, ντ = 0.001,
ντsτ = 0.001, and δ = 10%ofuo

1:nu
. The data were normalised into an interval of (−1, 1). The

Gibbs sampler was used to generate a total of 1000 iterations and the last 500 iterations were used
to perform the statistical analysis, which is shown in Table (1). Figure (1) shows the prediction
results from Nov 19, 1999 to Nov 08, 2000, with a mean square error 0.0415. For the purpose
of comparison, the forecast was also calculated from a single scale method, that is using the
averaged values uo

1:nu
directly, whose mean square error is 0.0522, which shows the efficiency of

the proposed multiscale method.

5 Conclusions

A Bayesian system identification approach to the modelling and prediction of multiscale time
series has been presented in this paper. The proposed approach provided a multiple scale mod-
elling framework for time series analysis and prediction. Due to the characteristics of multiple
scale, the prediction can be performed synchronously or asynchronously. It has been shown by
numerical studies that the proposed method works well in applications to real data.

The proposed method can actually be considered as a basic modelling framework for multiscale
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Figure 1: One-day prediction of relativistic electron intensity at geosynchronous orbit for a period
from Nov 19, 1999 to Nov 08, 2000 (solid – data; dashed – one-day prediction)
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Parameter Mean Standard Deviation
a1 0.7329 0.0072
b0 0.4254 0.0343
b1 0.0351 0.0102
φu1

0.9670 0.0410
φu2

0.9787 0.0181
φx1

0.9985 0.0267
φx2

0.9983 0.0392
τ1 0.0014 0.0007267
τ2 0.0015 0.0007027
σ2

y 0.2002 0.0192
σ2

u1
0.0686 0.0203

σ2
u2

0.0831 0.0202
σ2

x1
0.0183 0.0096

σ2
x2

0.1295 0.0223

Table 1: Statistical summaries for the parameters

time series. The models within this framwork can be chosen as different types such as MA and
ARMA depending on the characteristics of the time series.
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