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Abstract

Robot simulators are valuable tools for re-
searchers to develop control code in a fast and
efficient manner without spending time setting up
physical experiments. Most simulators, however,
do not model the real world accurately. As a con-
sequence, when a program is run on a real robot it
may behave differently from when run in simula-
tion. In this paper we present a method of devel-
oping a robot simulator that models the operation
of a real robot in a real environment accurately,
using real robot data and system identification to
construct the simulator’s model.

1. Introduction

When considering the behaviour of a robot, there are
three components that influence the system: (i) robot
hardware, (ii) the program being executed, and (iii)
the robot’s environment. Thus, the interaction of these
three components, as illustrated in Figure 1, constitutes
a highly complex system from which the overall robot
behaviour emerges.

Environment

or Task

Program code

Robot

Figure 1: Overall robot behaviour emerges from the

interaction between robot, task and environment

The common procedure to develop a control program
is for the robot programmer to write the program “as
best as possible” whilst considering the desired task.

However, it is unlikely that the desired behaviour will
be obtained immediately, as the robot programmer has
to make (often idealistic, simplifying) assumptions about
the robot’s hardware and properties of the environment.
Typically, the desired robot behaviour is eventually ob-
tained by a process of iterative refinement of the control
program.

Robot simulators are therefore useful for researchers
to develop and test new controllers. Simulators can save
time and effort by concentrating on the development of
the controller, rather than spending time on i) setting-up
real world experiments and ii) waiting for experiments
to complete, as using a simulator allows the researcher
to run experiments faster than real-time. Additionally,
simulators are the only way to provide a consistent rep-
etition of experiments.

Traditional trial-and-error-based approaches of pro-
gramming robots lack a rigorous design methodology,
they are costly, time consuming and error prone. In
this paper we present an alternative, describing a de-
sign method for a mobile robot simulator that accurately
models and simulates a physical robot’s interaction with
its environment, performing a particular task.

The overall aim of this research is the automatic gen-
eration of control code, without the need for an experi-
enced robot engineer to perform iterative refinement and
trial-and-error procedures. As a step towards this goal,
in this paper we present our experiments to create ac-
curate robot simulators that make precise predictions of
robot sensor measurements based on the robot’s position
in the environment.

1.1 Motivation

A number of existing robot simulators exist within the
robotics community, some are generic such as Player-
Stage (Gerkey et al., 2003) and Webots (Michel, 2004),
others are platform dependent such as the Kephera sim-
ulator (Michel, 1996). The ability of these robot simu-
lators to predict accurately depends on three models: i)
the robot model, ii) the task model, and iii) the envi-
ronment model. The environment model provides the
robot’s sensory perception based on the robot’s posi-
tion and orientation and is of the main interest to this
work. This model is dependent on the structure of
the environment and the properties of the materials the



environment is composed of. However, being generic,
they are based on general assumptions of environment
properties and fail to model extreme perceptions such
as specular reflections. As argued in (Lee et al., 1998,
Kyriacou et al., 2008) we believe that faithful simulation
is only obtainable when specific environmental scenar-
ios are modelled using data obtained from real environ-
ments.

1.1.1 Possible Approaches

In the simulator developed by Lund and
Miglino (Lund and Miglino, 1996), logged data is
stored in a lookup table and values are interpolated
to predict sensory perception at unvisited locations.
In (Lee et al., 1998) a neural network is used to model
the input-output relationships between robot location
and sensor perception. This approach works well,
however, neural networks produce an opaque model
that cannot be used to investigate the characteristics
of the inputs and outputs further (such as stability
analysis, sensitivity of the behaviour to particular sensor
(Saltelli et al., 2000) or environmental features, sensor
redundancy etc). Additionally, the structure of a neural
network does not allow straightforward comparison
between different models. Here, we therefore propose
a transparent modelling method, which is most closely
related to the work presented in (Kyriacou et al., 2008).
In Kyriacou’s paper, a robot simulator is built using
mathematical models representing the sensor perception
based on the robots location. Our work differs from
(Kyriacou et al., 2008), however, in that we create parsi-
monious sensor models based on the robot’s orientation
ϕ, rather than having many separate sensor models for
each (x, y) location in the robot’s environment.

2. Modelling Method

We propose the use of system identification, as used
in (Kyriacou et al., 2008), to develop accurate robot
simulation. We determine the relevant input-output pa-
rameters of the sensor simulation process — the accurate
simulation of laser perception based on a robot’s posi-
tion, and validate the resulting laser perception against
the robot’s real laser perception along a (separately
logged) validation path.

In this work we adopt the use of system identification,
rather than alternative modelling approaches such as ar-
tificial neural networks or lookup tables, because it offers
numerous benefits: the obtained models are compact, as
they consist of a single polynomial with a small num-
ber of terms; and the obtained models are transparent
and can be examined using standard techniques such as
sensitivity analysis (Saltelli et al., 2000).

NARMAX (Non-linear Auto-Regressive Moving Av-
erage model with eXogenous inputs) is a parameter es-

timation methodology to identify the important model
terms and their associated parameters of a non-linear
polynomial model of an unknown non-linear dynamic
system. The NARMAX methodology breaks the mod-
elling problem into the following steps: i) Structure de-
tection, ii) parameter estimation, iii) model validation,
iv) prediction, and v) analysis. A detailed procedure
of these steps is presented in (Chen and Billings, 1989,
Billings and Voon, 1986, Korenberg et al., 1988), and
details of the application of NARMAX to mobile robot
simulation in (Kyriacou et al., 2008).

In this work we obtain a model that relates the robot’s
positional location to its laser perception. The fact
that we obtain the model as a transparent polynomial
representation makes the model easily and accurately
transferable to any robot platform with the same sen-
sor type and configuration. Another benefit of the com-
pact mathematical form of the model is that it can be
directly implemented in any computer language using
standard mathematical libraries. This minimises the
time to translate programs between robot platforms and
languages. Increased execution time and reduced mem-
ory requirements are also obtained due to the task code
being condensed into a single polynomial with the mod-
elling process.

3. Experiments

The experiments in this paper where carried out in the
robotics arena of the Intelligent Systems Research Centre
in the University of Ulster. The robotics arena measures
100 m2 and is equipped with a powered floor, a Vicon

motion tracking system and a large number of robots. In
all the experiments described in this paper we used the
Metralabs SCITOS G5 autonomous robot Swilly, shown
in Figure 2. The robot is equipped with 24 sonar sen-
sors distributed around its circumference and a SICK

laser range finder, which scans the front of the robot
([0◦,270◦]) with a radial resolution of 0.5◦. In our exper-
iments the laser range finder was configured to scan the
front semi-circle of the robot in the range ([0◦,180◦]).

3.1 Experimental Set-Up

During the experiments the input from the robot’s laser,
position, orientation, transitional and rotational veloci-
ties were logged every 250 ms. In addition, the robot’s
actual x, y, z positions obtained from the Vicon motion
tracking system are logged simultaneously at 50 Hz, at
this speed the positional error was less than 1 mm.

The configuration of the robotics arena used in the
experiments is illustrated in Figure 3, where the experi-
mental set-up is built using various cardboard cartons.



Figure 2: Swilly, the Metralabs SCITOS G5 mobile

robot used in the experiments

Figure 3: Robot arena setup

3.1.1 The Sensorgraph

In our experiments we first construct what we term a
sensorgraph — a detailed log of sensor perceptions ob-
tained in the environment — by using the robot to collect
data from the environment that is being modelled. The
data that is collected during this process are the robot’s
position, orientation, laser perception and ground truth
position (obtained using the Vicon motion tracking sys-
tem). A random walk obstacle avoidance program us-
ing the laser sensor is run on Swilly, involving obstacle
avoidance and random rotations to the robot’s move-
ment at predefined intervals. The basis of introducing
the random rotations is to try and ensure that the robot
explores as much of the environment as possible at dif-
ferent orientations. In Figure 4 we show the actual posi-
tions where Swilly logged data, over 1400 data samples
in these experiments.

It is important that the robot has logged adequate
data throughout this data collection stage, as the ob-
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Figure 4: Data sampling points

tained model’s accuracy will depend on the data con-
tained in the sensorgraph. Therefore, to ensure that
we have a good distribution of values we computed his-
tograms for the robot’s position obtained using the Vicon

tracking system along the x-axis and y-axis (Figures 5
and 6). Although the histograms show a denser distri-
bution of the sensorgraph data at the arena edges, they
show that all possibly x and y locations are equally often
visited (uniform distribution) — a desirable property for
a sensorgraph.
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Figure 5: Histogram of visited x positions

It is also important to consider the robot’s heading,
because the modelling process needs to consider all pos-
sible orientations of the robot. In Figure 7 we illustrate
the histogram representing the rotational angles where
the robot has logged data as contained in the sensor-
graph, again a good almost-uniform distribution.

After the data was collected we median-filtered the
laser data over 30◦ segments. Thus, rather than 360 laser
readings ([0◦,180◦] × 0.5◦ resolution), we then used the
six median-filtered segments
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Figure 6: Histogram of visited y positions
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Figure 7: Histogram of headings ϕ at data-logging

points

L15 = median[0◦, 30◦]

L45 = median[30◦, 60◦]

L75 = median[60◦, 90◦]

L105 = median[90◦, 120◦]

L135 = median[120◦, 150◦] and

L165 = median[150◦, 180◦]

as input to our modelling process.

3.1.2 Models For Different ϕ

After logging the sensorgraph data, it is required to com-
pute a model which predicts the robot’s sensor percep-
tion, given the robot’s position and orientation. When
computing this model we need to consider all the possible
(x, y) positional locations the robot may visit, as well as
the robots orientation ϕ at these positions. The dimen-
sionality of this space is very high, and in order to man-

age the task of constructing a model we have restricted
the number of models to only 12 models, modelling 30◦

segments, thus covering the entire 360◦ range of possi-
ble robot headings with 12 models. Put differently, we
constructed 12 models, one for each 30◦ segment, of the
form Lk = f(x, y)∀ϕ = k, where Lk is a model of the
laser reading when the robot assumes a heading ϕ of k
degrees.

3.1.3 Validation Trajectories

To validate the robot’s predicted sensor perceptions
based on the robot’s position (x, y) and orientation ϕ,
a number of independent validation runs were logged by
manually driving the robot along a novel path immedi-
ately after the logging of the sensorgraph. During these
validation runs the robot’s position (obtained using the
Vicon tracking system) and laser perception were logged.
In Figure 8 and Figure 9 we show the trajectory of two
validation runs, along with the original sampling points
used to obtain the sensorgraph.
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Figure 8: Validation trajectory 1
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Figure 9: Validation trajectory 2



These validation runs allow us to compare, measure
and validate how the actual real sensor perception com-
pares with the model’s predicted values along a new tra-
jectory.

3.2 Initial Results

After collection of the data in the sensorgraph we use
the NARMAX system identification procedure to esti-
mate the robot’s laser perception as a function of the
the robot’s location, obtained using the Vicon tracking
system and using the logged training data. As described
earlier, 12 polynomials were obtained in total, express-
ing the laser perception of the robot as a function of
the robots location and heading to the nearest 30◦. The
models were chosen to be of fourth degree and no regres-
sion was used in the inputs and outputs.

For example, for ϕ = −75◦ ± 15◦ and laser segment
L75 this resulted in a NARMAX polynomial structure
containing 9 terms

Lp75/cm = +223.74

+ 1.47 ∗ x

+ 0.68 ∗ y

− 0.002 ∗ x2

− 0.001 ∗ y2

− 0.0001 ∗ x3

− 0.00000036 ∗ x4

+ 0.00000006 ∗ y4

+ 0.000012 ∗ y ∗ y2.

The difference between model prediction and true
value is shown in Figure 10.

30 40 50 60 70 80 90 100 110
−100

−50

0

50

100

150

200

250

300

350

400

Output and Model predicted output (time domain)

n

D
is

ta
nc

e 
[c

m
]

Output

Model predicted output

Figure 10: Actual and predicted laser readings along

validation trajectory 1

For ϕ = −165◦ ± 15◦ and laser segment L75 this re-
sulted in a NARMAX polynomial structure containing 4
terms

Lp75/cm = +234.84

+ 0.85 ∗ x

+ 0.30 ∗ y

+ 0.0014 ∗ x ∗ y,

the model validation is illustrated in Figure 11.
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Figure 11: Actual and predicted laser readings along

validation trajectory 2

In a similar manner we computed all 12 models for the
range of orientations ϕ and for each laser segment.

3.2.1 Assessment 1

To assess the performance of the obtained polynomial
models we used the validation trajectory 1 (Figure 8).
In Figure 12 we plot the predicted laser values for the
segment L̃75 against the actual laser values L75.

In Figure 13 we plot the predicted laser values for the
segment ˜L105 against the actual laser values L105.

Mean error and standard error for validation trajec-
tory 1 are given in Table 1.

3.2.2 Assessment 2

We also assessed the performance of the obtained poly-
nomial models for a more complex non-linear trajectory,
such as the one given in validation trajectory 2 (Fig-
ure 9). Figure 14 shows the predicted laser values for
the segment L̃75 against the actually logged laser values
L75.

Figure 15 shows the predicted laser values for the seg-
ment ˜L105 against the actual laser values L105.

The mean error and standard error for validation tra-
jectory 2 are given in Table 2.
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Figure 12: Predicted laser L̃75 values against actual

logged laser L75 values for validation trajectory 1
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Figure 13: Predicted laser ˜L105 values against actual

logged laser L105 values for validation trajectory 1

Table 1: Absolute Mean error and Standard error in

centimetres for validation trajectory 1

Laser Mean and Standard error [cm]

L̃15 60 ± 5

L̃45 53 ± 5

L̃75 31 ± 4
˜L105 17 ± 4
˜L135 21 ± 2
˜L165 20 ± 2
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Figure 14: Predicted laser L̃75 values against actual

logged laser L75 values for validation trajectory 2
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Figure 15: Predicted laser ˜L105 values against actual

logged laser L105 values for validation trajectory 2

Table 2: Absolute Mean error and Standard error in

centimetres for validation trajectory 2

Laser Mean and Standard error [cm]

L̃15 62 ± 3

L̃45 46 ± 4

L̃75 66 ± 4
˜L105 39 ± 3
˜L135 29 ± 4
˜L165 27 ± 3



Further Statistical Evaluations We also per-
formed numerical tests to determine the performance
of the simulator for this second validation trajec-
tory, and compared the error of the simulator model
against the error of a “random guess” simulator
that generates random predictions from the range of
valid laser measurements. The Mann-Whitney U -
test (Snedecor and Cochran, 1989, Barnard et al., 1993)
was performed on both pairs of distributions in order
to check if they are significantly different or not. Both
tests indicated that the distributions are different at the
5% significance level as illustrated in Figure 16 for the
laser segment L̃75 and in Figure 17 for the laser segment

˜L105. In other words, the obtained model performs sig-
nificantly better than a random guess.
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Figure 16: U -statistic illustrating comparison of pre-

dicted laser error with random guess error for

laser L75

The Spearman rank correlation coefficients between
actual laser perception and predicted laser perception
are given in Table 3, they are all significant (p < 0.05).

Table 3: Spearman rank correlation coefficients be-

tween predicted and actual laser readings for val-

idation trajectory 2. All correlations are statisti-

cally significant (p < 0.05).

Laser segment SR

1 0.7264930
2 0.3045180
3 0.9775737
4 0.9275737
5 0.7720901
6 0.7360612
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4. Summary And Conclusions

4.1 Summary

In this paper we have presented an approach to model
a robot’s laser perception based on position and orien-
tation, using the NARMAX model estimation method-
ology. The mobile robot is used to explore the envi-
ronment whilst logging sensor perception and its actual
position. This data is then used to construct models
that predict the robot’s perception based on its position
and orientation. To evaluate the performance accuracy
of the obtained models we compared the robot’s real
sensor perception along two independent validation runs
with the sensor perception predicted by our model.

4.2 Conclusions

We have shown how to model a robot’s laser perception
as a function of its position, using compact polynomial
models, and how the NARMAX modelling approach can
be used to produce transparent mathematical functions
that can be related directly to the modelling task.

This method of simulating the robot’s perception has
a number of important benefits. Simulator development
is fast and the obtained model is very compact. The
model is transparent, i.e. represented as a polynomial
function that can be analysed mathematically.

4.3 Future Work

The experiments presented in this paper are first steps
towards our goal of automatic generation of robot control



code. The goal of this research is to have a robot observe
a human performing a task, and for the robot to gener-
ate control code automatically from this observation to
perform the same task. The experiments presented here
illustrate that it is possible to create a model of sensor
perception as a function of the robot’s position within
the environment. The next stage in this research is to
model a human task, using the VICON tracking system.
Using the demonstrator’s trajectory we will estimate the
robot’s perception at these positions, using the method
described in this paper, to create a new model that mim-
ics the task performed by the human demonstrator.
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