36 research outputs found
Honeywell's Compact, Wide-angle Uv-visible Imaging Sensor
Honeywell is currently developing the Earth Reference Attitude Determination System (ERADS). ERADS determines attitude by imaging the entire Earth's limb and a ring of the adjacent star field in the 2800-3000 A band of the ultraviolet. This is achieved through the use of a highly nonconventional optical system, an intensifier tube, and a mega-element CCD array. The optics image a 30 degree region in the center of the field, and an outer region typically from 128 to 148 degrees, which can be adjusted up to 180 degrees. Because of the design employed, the illumination at the outer edge of the field is only some 15 percent below that at the center, in contrast to the drastic rolloffs encountered in conventional wide-angle sensors. The outer diameter of the sensor is only 3 in; the volume and weight of the entire system, including processor, are 1000 cc and 6 kg, respectively
Mixed Quantum/Classical Calculations of Total and Differential Elastic and Rotationally Inelastic Scattering Cross Sections for Light and Heavy Reduced Masses in a Broad Range of Collision Energies
The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys.139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a broad range of collision energies and rotational excitations. The resultant collision cross sections vary through ten-orders of magnitude range of values. Both inelastic and elastic channels are considered, as well as differential (over scattering angle) cross sections. In many cases results of the mixed quantum/classical method are hard to distinguish from the full quantum results. In less favorable cases (light masses, larger quanta, and small collision energies) some deviations are observed but, even in the worst cases, they are within 25% or so. The method is computationally cheap and particularly accurate at higher energies, heavier masses, and larger densities of states. At these conditions MQCT represents a useful alternative to the standard full-quantum scattering theory
Observation of the Dynamic Beta Effect at CESR with CLEO
Using the silicon strip detector of the CLEO experiment operating at the
Cornell Electron-positron Storage Ring (CESR), we have observed that the
horizontal size of the luminous region decreases in the presence of the
beam-beam interaction from what is expected without the beam-beam interaction.
The dependence on the bunch current agrees with the prediction of the dynamic
beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available
through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.
Universality of Thermodynamic Constants Governing Biological Growth Rates
Background: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting ‘master reaction ’ using terms describing the temperature-dependent denaturation of the reaction’s enzyme. We consider whether such a model can describe growth in each domain of life. Methodology/Principal Findings: A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. Conclusions/Significance: The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models
Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases
<div><p>Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) <i>ARHGEF6</i> is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) <i>CENPI</i> is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of <i>FOXP3</i>, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that <i>C1GALT1C1</i> exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.</p></div
Gene-based associations replicating in other diseases.
<p>All genes with a discovery nominal P<1×10<sup>−3</sup> that also replicated in a dataset of a <i>different</i> disease (see main text). The table mirrors <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113684#pone-0113684-t002" target="_blank">Table 2</a>, with the only difference being whether replication is in the same disease (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113684#pone-0113684-t002" target="_blank">Table 2</a>) or a different one (this table). Cases in which the same association is replicated in multiple datasets span several rows.</p><p>Gene-based associations replicating in other diseases.</p