540 research outputs found

    Tabulation and summary of thermodynamic effects data for developed cavitation on ogive-nosed bodies

    Get PDF
    Thermodynamic effects data for developed cavitation on zero and quarter caliber ogives in Freon 113 and water are tabulated and summarized. These data include temperature depression (delta T), flow coefficient (C sub Q), and various geometrical characteristics of the cavity. For the delta T tests, the free-stream temperature varied from 35 C to 95 C in Freon 113 and from 60 C to 125 C in water for a velocity range of 19.5 m/sec to 36.6 m/sec. Two correlations of the delta T data by the entrainment method are presented. These correlations involve different combinations of the Nusselt, Reynolds, Froude, Weber, and Peclet numbers and dimensionless cavity length

    Drug-Induced Hematologic Syndromes

    Get PDF
    Objective. Drugs can induce almost the entire spectrum of hematologic disorders, affecting white cells, red cells, platelets, and the coagulation system. This paper aims to emphasize the broad range of drug-induced hematological syndromes and to highlight some of the newer drugs and syndromes. Methods. Medline literature on drug-induced hematologic syndromes was reviewed. Most reports and reviews focus on individual drugs or cytopenias. Results. Drug-induced syndromes include hemolytic anemias, methemoglobinemia, red cell aplasia, sideroblastic anemia, megaloblastic anemia, polycythemia, aplastic anemia, leukocytosis, neutropenia, eosinophilia, immune thrombocytopenia, microangiopathic syndromes, hypercoagulability, hypoprothrombinemia, circulating anticoagulants, myelodysplasia, and acute leukemia. Some of the classic drugs known to cause hematologic abnormalities have been replaced by newer drugs, including biologics, accompanied by their own syndromes and unintended side effects. Conclusions. Drugs can induce toxicities spanning many hematologic syndromes, mediated by a variety of mechanisms. Physicians need to be alert to the potential for iatrogenic drug-induced hematologic complications

    Emission of multiple dispersive waves from a single Raman-shifting soliton in an axially-varying optical fiber

    Get PDF
    International audienceWe provide the experimental demonstration of the generation of multiple dispersive waves from a single soliton propagating in the vicinity of the first zero-dispersion wavelength of an axially-varying optical fiber. The fiber is designed such that the Raman-shifting soliton successively hits three times the longitudinally evolving zero-dispersion wavelength, which results in the emission of three distinct dispersive waves at different fiber lengths. These results illustrate how suitably controlled axially-varying fibers allow to tailor the soliton dynamics in a very accurate way

    Real-time measurements of dissipative solitons in a mode-locked fiber laser

    Full text link
    Dissipative solitons are remarkable localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist in nature, and are seen in far-from-equilibrium systems in many fields including chemistry, biology, and physics. There has been particular interest in studying their properties in mode-locked lasers producing ultrashort light pulses, but experiments have been limited by the lack of convenient measurement techniques able to track the soliton evolution in real-time. Here, we use dispersive Fourier transform and time lens measurements to simultaneously measure real-time spectral and temporal evolution of dissipative solitons in a fiber laser as the turn-on dynamics pass through a transient unstable regime with complex break-up and collision dynamics before stabilizing to a regular mode-locked pulse train. Our measurements enable reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum to provide further physical insight. These findings are significant in showing how real-time measurements can provide new perspectives into the ultrafast transient dynamics of complex systems.Comment: See also M. Narhi, P. Ryczkowski, C. Billet, G. Genty, J. M. Dudley, Ultrafast Simultaneous Real Time Spectral and Temporal Measurements of Fibre Laser Modelocking Dynamics, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, paper EE-3.5 (2017
    corecore