533 research outputs found
Real-time measurements of dissipative solitons in a mode-locked fiber laser
Dissipative solitons are remarkable localized states of a physical system
that arise from the dynamical balance between nonlinearity, dispersion and
environmental energy exchange. They are the most universal form of soliton that
can exist in nature, and are seen in far-from-equilibrium systems in many
fields including chemistry, biology, and physics. There has been particular
interest in studying their properties in mode-locked lasers producing
ultrashort light pulses, but experiments have been limited by the lack of
convenient measurement techniques able to track the soliton evolution in
real-time. Here, we use dispersive Fourier transform and time lens measurements
to simultaneously measure real-time spectral and temporal evolution of
dissipative solitons in a fiber laser as the turn-on dynamics pass through a
transient unstable regime with complex break-up and collision dynamics before
stabilizing to a regular mode-locked pulse train. Our measurements enable
reconstruction of the soliton amplitude and phase and calculation of the
corresponding complex-valued eigenvalue spectrum to provide further physical
insight. These findings are significant in showing how real-time measurements
can provide new perspectives into the ultrafast transient dynamics of complex
systems.Comment: See also M. Narhi, P. Ryczkowski, C. Billet, G. Genty, J. M. Dudley,
Ultrafast Simultaneous Real Time Spectral and Temporal Measurements of Fibre
Laser Modelocking Dynamics, 2017 Conference on Lasers and Electro-Optics
Europe & European Quantum Electronics Conference, paper EE-3.5 (2017
High-efficiency micromorph silicon solar cells with in-situ intermediate reflector deposited on various rough LPCVD ZnO
Light management using intermediate reflector layers (IRL) and advanced front transparent conductive oxide (TCO) morphologies is needed to rise the short-circuit current density (Jsc) of micromorph tandem solar cells above 14 mA/cm2. For micromorph cells deposited on surface-textured ZnO layers grown by low-pressure chemical vapour deposition (LPCVD), we study the interplay between the front TCO layer and the IRL and its impact on fill factor and current matching conditions. The key role of the angular distribution of the light scattered by the front LPCVD ZnO layer is highlighted. A micromorph cell with 11.1% stabilized conversion efficiency is demonstrated. By increasing the bottom cell thickness and adding an antireflection coating, a Jsc value of 13.8 mA/cm2 is achieved. This remarkably high Jsc yields 13.3% initial conversion efficiency
The phylogenetic affinities of the extinct glyptodonts
Among the fossils of hitherto unknown mammals that Darwin collected in South America between 1832 and 1833 during the Beagle expedition [1] were examples of the large, heavily armored herbivores later known as glyptodonts. Ever since, glyptodonts have fascinated evolutionary biologists because of their remarkable skeletal adaptations and seemingly isolated phylogenetic position even within their natural group, the cingulate xenarthrans (armadillos and their allies [2]). In possessing a carapace comprised of fused osteoderms, the glyptodonts were clearly related to other cingulates, but their precise phylogenetic position as suggested by morphology remains unresolved [3,4]. To provide a molecular perspective on this issue, we designed sequence-capture baits using in silico reconstructed ancestral sequences and successfully assembled the complete mitochondrial genome of Doedicurus sp., one of the largest glyptodonts. Our phylogenetic reconstructions establish that glyptodonts are in fact deeply nested within the armadillo crown-group, representing a distinct subfamily (Glyptodontinae) within family Chlamyphoridae [5]. Molecular dating suggests that glyptodonts diverged no earlier than around 35 million years ago, in good agreement with their fossil record. Our results highlight the derived nature of the glyptodont morphotype, one aspect of which is a spectacular increase in body size until their extinction at the end of the last ice age.Facultad de Ciencias Naturales y Muse
Development of Micromorph Cells in Large-Area Industrial Reactor
The influences of the deposition pressure and silane depletion on the efficiency of single-junction microcrystalline silicon solar cells has been investigated. The efficiency is found to correlate with the ion energy which affects the density of states in the absorber material. Cell with efficiency of 7.3% at a deposition rate of 1 nm/s, and, respectively, 7.8% at 0.35 nm/s were deposited in R&D KAI M industrial reactor. Silicon oxide based intermediate reflector layers were developed in KAI reactor for incorporation in micromorph devices. Material with an index of refraction of 1.7 at 600 nm and low lateral conductivity were deposited. Micromorph devices incorporating these intermediate reflector layers were fabricated with initial efficiency of 12.3% at a deposition rate of 0.35 nm/s and 10.8% at 1 nm/s
Micromorph tandem solar cells grown at high rate with in-situ intermediate reflector in industrial KAI PECVD reactors
We report on the latest results of tandem micromorph (a-Si:H/μc-Si:H) silicon solar cells fabricated in commercial Oerlikon Solar KAI-S and KAI-M PECVD reactors. First developments of in-situ silicon oxide based intermediate reflector (SOIR) in KAI reactors are as well presented. Under low depletion conditions (silane concentration 1cm2, with a deposition rate of 0.55 nm/s for microcrystalline silicon and an ex-situ silicon oxide-based intermediate reflector (SOIR). Under high depletion conditions, the growth rate could be raised up to 1.2 nm/s, in a modified KAI-M reactor, and the highest initial efficiency reached so far is 9.7% with in-situ SOIR and top cell thickness of ∼ 230 nm. Promising micromorph solar cells are thus produced under conditions that are highly favorable to low-cost fabrication of tandem modules at an industrial level
Cube Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium
CRYPTO 2008 saw the introduction of the hash function
MD6 and of cube attacks, a type of algebraic attack applicable to cryptographic
functions having a low-degree algebraic normal form over GF(2).
This paper applies cube attacks to reduced round MD6, finding the full
128-bit key of a 14-round MD6 with complexity 2^22 (which takes less
than a minute on a single PC). This is the best key recovery attack announced
so far for MD6. We then introduce a new class of attacks called
cube testers, based on efficient property-testing algorithms, and apply
them to MD6 and to the stream cipher Trivium. Unlike the standard
cube attacks, cube testers detect nonrandom behavior rather than performing
key extraction, but they can also attack cryptographic schemes
described by nonrandom polynomials of relatively high degree. Applied
to MD6, cube testers detect nonrandomness over 18 rounds in 2^17 complexity;
applied to a slightly modified version of the MD6 compression
function, they can distinguish 66 rounds from random in 2^24 complexity.
Cube testers give distinguishers on Trivium reduced to 790 rounds from
random with 2^30 complexity and detect nonrandomness over 885 rounds
in 2^27, improving on the original 767-round cube attack
Examining the Duration of Carryover Effect in Patients With Chronic Pain Treated With Spinal Cord Stimulation (EChO Study):An Open, Interventional, Investigator-Initiated, International Multicenter Study
Objectives: Spinal cord stimulation (SCS) is a surgical treatment for severe, chronic, neuropathic pain. It is based on one to two lead(s) implanted in the epidural space, stimulating the dorsal column. It has long been assumed that when deactivating SCS, there is a variable interval before the patient perceives the return of the pain, a phenomenon often termed echo or carryover effect. Although the carryover effect has been problematized as a source of error in crossover studies, no experimental investigation of the effect has been published. This open, prospective, international multicenter study aimed to systematically document, quantify, and investigate the carryover effect in SCS. Materials and Methods: Eligible patients with a beneficial effect from their SCS treatment were instructed to deactivate their SCS device in a home setting and to reactivate it when their pain returned. The primary outcome was duration of carryover time defined as the time interval from deactivation to reactivation. Central clinical parameters (age, sex, indication for SCS, SCS treatment details, pain score) were registered and correlated with carryover time using nonparametric tests (Mann-Whitney/Kruskal-Wallis) for categorical data and linear regression for continuous data. Results: In total, 158 patients were included in the analyses. A median carryover time of five hours was found (interquartile range 2.5;21 hours). Back pain as primary indication for SCS, high-frequency stimulation, and higher pain score at the time of deactivation were correlated with longer carryover time. Conclusions: This study confirms the existence of the carryover effect and indicates a remarkably high degree of interindividual variation. The results suggest that the magnitude of carryover may be correlated to the nature of the pain condition and possibly stimulation paradigms. Clinical Trial Registration: The Clinicaltrials.gov registration number for the study is NCT03386058.</p
- …