1,167 research outputs found

    A review on the discovery reach of Dark Matter directional detection

    Full text link
    Directional detection of galactic Dark Matter offers a unique opportunity to identify Weakly Interacting Massive Particle (WIMP) events as such. Depending on the unknown WIMP-nucleon cross section, directional detection may be used to : exclude Dark Matter, discover galactic Dark Matter with a high significance or constrain WIMP and halo properties. We review the discovery reach of Dark Matter directional detection.Comment: Proceedings of the 4th international conference on Directional Detection of Dark Matter (CYGNUS 2013), 10-12 June 2013, Toyama, Japa

    Track reconstruction with MIMAC

    Full text link
    Directional detection of Dark Matter is a promising search strategy. However, to perform such kind of detection, the recoiling tracks have to be accurately reconstructed: direction, sense and position in the detector volume. In order to optimize the track reconstruction and to fully exploit the data from the MIMAC detector, we developed a likelihood method dedicated to the track reconstruction. This likelihood approach requires a full simulation of track measurements with MIMAC in order to compare real tracks to simulated ones. Finally, we found that the MIMAC detector should have the required performance to perform a competitive directional detection of Dark Matter.Comment: 9 pages, 6 figures; Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Identification of Dark Matter with directional detection

    Full text link
    Directional detection is a promising search strategy to discover galactic Dark Matter. Taking advantage on the rotation of the Solar system around the Galactic center through the Dark Matter halo, it allows to show a direction dependence of WIMP events. Data of directional detectors are composed of energy and a 3D track for each recoiling nuclei. Here, we present a Bayesian analysis method dedicated to data from upcoming directional detectors. However, we focus only on the angular part of the event distribution, arguing that the energy part of the background distribution is unknown. Two different cases are considered: a positive or a null detection of Dark Matter. In the first scenario, we will present a map-based likelihood method allowing to recover the main incoming direction of the signal and its significance, thus proving its Galactic origin. In the second scenario, a new statistical method is proposed. It is based on an extended likelihood in order to set robust and competitive exclusion limits. This method has been compared to two other methods and has been shown to be optimal in any detector configurations. Eventually, prospects for the MIMAC project are presented in the case of a 10 kg CF4 detector with an exposition time of 3 years.Comment: Proceeding of the 8th International Workshop on the Identification of Dark Matter (IDM 2010), July 2010, Montpellier, France. To appear in Proceedings of Science (PoS

    Directional detection of galactic dark matter

    Full text link
    Directional detection is a promising Dark Matter search strategy. Taking advantage on the rotation of the Solar system around the galactic center through the Dark Matter halo, it allows to show a direction dependence of WIMP events that may be a powerful tool to identify genuine WIMP events as such. Directional detection strategy requires the simultaneous measurement of the energy and the 3D track of low energy recoils, which is a common challenge for all current projects of directional detectors.Comment: Proceedings of UCLA Dark Matter 2012, 10th Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, Marina del Rey Marriott, CA, USA, February 22-24, 201

    Complementarity of dark matter detectors in light of the neutrino background

    Get PDF
    Direct detection dark matter experiments looking for WIMP-nucleus elastic scattering will soon be sensitive to an irreducible background from neutrinos which will drastically affect their discovery potential. Here we explore how the neutrino background will affect future ton-scale experiments considering both spin-dependent and spin-independent interactions. We show that combining data from experiments using different targets can improve the dark matter discovery potential due to target complementarity. We find that in the context of spin-dependent interactions, combining results from several targets can greatly enhance the subtraction of the neutrino background for WIMP masses below 10 GeV/c2^2 and therefore probe dark matter models to lower cross-sections. In the context of target complementarity, we also explore how one can tune the relative exposures of different target materials to optimize the WIMP discovery potential.Comment: 13 pages, 12 figures, 3 table

    A {\mu}-TPC detector for the characterization of low energy neutron fields

    Full text link
    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields

    Resonantly enhanced filamentation in gases

    Full text link
    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses

    Directional Detection of Dark Matter with MIMAC

    Full text link
    Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to Dark Matter phenomenology using directional detection. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated. However, such results need highly accurate track reconstruction which should be reachable by the MIMAC detector using a dedicated readout combined with a likelihood analysis of recoiling nuclei.Comment: 4 pages, 2 figures, to appear in the proceedings of the TAUP 2011 conference held in Munich (5 - 9 September, 2011

    Exclusion, Discovery and Identification of Dark Matter with Directional Detection

    Full text link
    Directional detection is a promising search strategy to discover galactic Dark Matter. We present a Bayesian analysis framework dedicated to data from upcoming directional detectors. The interest of directional detection as a powerful tool to set exclusion limits, to authentify a Dark Matter detection or to constrain the Dark Matter properties, both from particle physics and galactic halo physics, will be demonstrated.Comment: 10 pages, 11 figures; Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
    • …
    corecore