3,359 research outputs found

    Surface defects from fractional branes. Part I

    Get PDF
    We show that the Gukov-Witten monodromy defects of supersymmetric Yang-Mills theory can be realized in perturbative string theory by considering an orbifold background of the Kanno-Tachikawa type and placing stacks of fractional D3-branes whose world-volume partially extends along the orbifold directions. In particular, we show that turning on a constant background value for some scalar fields in the closed string twisted sectors induces a non-trivial profile for the gauge field and one of the complex scalars of the world-volume theory, and that this profile exactly matches the singular behavior that oneexpects for a Gukov-Witten surface defect in the N = 4 super Yang-Mills theory. To keep the presentation as simple as possible, in this work we restrict our analysis to surface defects corresponding to a \u21242 orbifold and defer the study of the most general case to a companion paper

    Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials

    Full text link
    In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi of the one-dimensional Schroedinger equation, such that the components Psi1 and Psi2 approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. A modification for discontinuous potential stationary stattering states was presented in a second paper [J. Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure

    Influence of the pseudogap on the superconductivity-induced phonon renormalization in high-Tc_c superconductors

    Full text link
    We investigate the influence of a d-density wave (DDW) gap on the superconductivity-induced renormalization of phonon frequency and linewidth. The results are discussed with respect to Raman and inelastic neutron scattering experiments. It turns out that the DDW gap can enhance the range of frequencies for q=0q=0 phonon softening depending on the underlying band structure. Moreover we show that an anisotropic 'd-wave' pseudogap can also contribute to the q-dependent linewidth broadening of the 340cm1^{-1} phonon in YBa2_2Cu3_3O7_7.Comment: 4 page

    The poverty of journal publishing

    Get PDF
    The article opens with a critical analysis of the dominant business model of for-profit, academic publishing, arguing that the extraordinarily high profits of the big publishers are dependent upon a double appropriation that exploits both academic labour and universities’ financial resources. Against this model, we outline four possible responses: the further development of open access repositories, a fair trade model of publishing regulation, a renaissance of the university presses, and, finally, a move away from private, for-profit publishing companies toward autonomous journal publishing by editorial boards and academic associations. </jats:p

    Solution of Some Integrable One-Dimensional Quantum Systems

    Get PDF
    In this paper, we investigate a family of one-dimensional multi-component quantum many-body systems. The interaction is an exchange interaction based on the familiar family of integrable systems which includes the inverse square potential. We show these systems to be integrable, and exploit this integrability to completely determine the spectrum including degeneracy, and thus the thermodynamics. The periodic inverse square case is worked out explicitly. Next, we show that in the limit of strong interaction the "spin" degrees of freedom decouple. Taking this limit for our example, we obtain a complete solution to a lattice system introduced recently by Shastry, and Haldane; our solution reproduces the numerical results. Finally, we emphasize the simple explanation for the high multiplicities found in this model

    Isotope Effect for the Penetration Depth in Superconductors

    Full text link
    We show that various factors can lead to an isotopic dependence of the penetration depth δ\delta. Non-adiabaticity (Jahn-Teller crossing) leads to the isotope effect of the charge carrier concentration nn and, consequently, of δ\delta in doped superconductors such as the cuprates. A general equation relating the isotope coefficients of TcT_c and of δ\delta is presented for London superconductors. We further show that the presence of magnetic impurities or a proximity contact also lead to an isotopic dependence of δ\delta; the isotope coefficient turns out to be temperature dependent, β(T)\beta(T), in these cases. The existence of the isotope effect for the penetration depth is predicted for conventional as well as for high-temperature superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
    corecore