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1 Introduction

Non-local operators have traditionally played an important role in quantum field theory

since they can provide valuable information especially at the non-perturbative level. In

this work we consider surface defects in 4d supersymmetric Yang-Mills theories and study

their explicit realization in string theory.

From the gauge theory point of view, there are several ways to analyze surface defects.

The original approach of Gukov and Witten (GW) in [1, 2] was to treat them as monodromy

defects, in which one specifies the singular behavior of the fields of the gauge theory as one

approaches the defect. Another possibility is to describe a surface defect as a 2d quiver
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gauge theory with some degrees of freedom coupled to a 4d gauge theory [3, 4]. In many

cases these two different descriptions lead to the same results [5]. For example, the low-

energy effective action on the Coulomb branch of the 4d gauge theory computed in the

two approaches exactly match. Moreover, by fruitfully combining the two methods various

properties of the surface defects as well as many duality relations and non-perturbative

effects can be studied [6–14].

There are also several ways to embed the surface defects in string theory and, more

generally, to study the defects from a higher-dimensional perspective. In [15, 16] the GW

defects were given a holographic representation in terms of bubbling geometries, which

are particular solutions of Type II B supergravity that asymptote to AdS5 × S5. Since

many 4d supersymmetric gauge theories can be obtained by compactification from the

6d (2, 0) theory defined on the world-volume of an M5 brane [17, 18], surface defects

can also be realized by introducing intersecting M5 branes or an M2 brane inside the M5

brane [8]. From this six dimensional perspective, surface defects have been recently studied

in detail [19] following earlier work in [18, 20, 21], by exploiting the relation to the Hitchin

integrable system, with the aim of obtaining a complete classification of the surface defects

in the 6d theory.

In this paper we shall study the simplest case of GW defects in the maximally super-

symmetric N = 4 Yang-Mills theory with gauge group U(N) or SU(N). Our primary goal

is to realize these surface defects in perturbative string theory and to recover the singular

profiles of the fields in the gauge theory. We do so by calculating perturbative open/closed

string amplitudes in Type II B string theory on an orbifold background. Following a pro-

posal of Kanno and Tachikawa (KT) [22], we engineer the 4d N = 4 Yang-Mills theory by

means of fractional D3-branes with two world-volume directions along the orbifold, leaving

unbroken the Poincaré symmetry in the other two world-volume directions. This is quite

different from the more familiar configuration in which the fractional D3-branes are com-

pletely transverse to the orbifold [23]. In fact, in this latter case the resulting gauge theory

has Poincaré symmetry in four dimensions but a reduced amount of supersymmetry since

only a fraction of the sixteen supercharges of the orbifold background is preserved on the

world-volume.

This orbifold set-up has already been studied in earlier works on the subject [6, 10,

22, 24] where also fractional D(–1)-branes have been introduced on top of the fractional

D3-branes to derive the so-called ramified instanton partition function in the presence of

a surface operator, extending the equivariant localization methods of [25]. In this paper,

instead, we consider only stacks of fractional D3-branes and focus on the gauge theory

defined on their world-volume, which has largely remained unexplored. In particular we

compute correlators involving both the massless fields of the gauge theory and the mass-

less twisted scalars in the Neveu-Schwarz/Neveu-Schwarz (NS/NS) and Ramond/Ramond

(R/R) sectors of the closed string background, and show that these correlators precisely

encode the singular profiles that define a GW defect. The continuous parameters that

appear in these profiles and that are part of the defining data of a surface operator are

related to the vacuum expectation values of the twisted scalars. In this way we clarify in

detail how the KT set-up realizes surface defects in the gauge theory.
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We believe that this construction of surface defects using perturbative string theory is

interesting because it provides an explicit and calculable framework which may be useful

also for various generalizations and applications. For instance, by introducing orientifolds,

it would be possible to generalize our results to other classical gauge groups. Similarly,

one could try to construct surface defects in quiver gauge theories or in theories with less

supersymmetry. Furthermore, our explicit string realization of surface defects may turn

out to be useful in computing other quantities that characterize the superconformal defect

field theory and help to establish connections with alternative approaches to the study

of defects.

This paper is organized as follows: in section 2, we review the main features of mon-

odromy defects and outline our proposal to recover the properties of the defect using frac-

tional branes. In section 3 we describe in more detail the orbifold background and discuss

the massless fields of the twisted sectors that will play an important role in our analysis.

To avoid too many technical issues, we consider only the case of simple defects deferring

the analysis of the general case to a companion paper [26]. In section 4 we introduce the

fractional branes that realize the surface defects. In section 5 we go on to compute the

relevant disk correlators and then in section 6 we show how these can be used to derive

the singular profiles of the gauge fields and scalars in the presence of the defect. This

allows us to relate the continuous parameters of the surface defects to expectation values

of certain twisted closed string fields. Finally in the concluding section we comment on

how our results are consistent with the action of S-duality in the N = 4 gauge theory. We

collect some technical material in the appendices.

2 Review and outline

We begin by briefly reviewing the main features of the GW monodromy defects in N = 4

super Yang-Mills theory with gauge group U(N) or SU(N), following [1, 2].1 Then we

outline the main ideas behind our proposal to complete the KT description [22] of such

defects in terms of fractional D3-branes in an orbifold background. The details of our

proposal will be fully discussed in the following sections.

2.1 Monodromy defects

Let us consider an N = 4 super Yang-Mills theory defined on R4 ' C(1) × C(2). We will

use the complex coordinate zi on C(i); we will also use polar coordinates in C(2) setting

z2 = r eiθ. It will also be useful at times to denote by ~x‖ and ~x⊥ the real coordinates of

these two planes and by ~k‖ and ~k⊥ the corresponding momenta.

A monodromy defect D is a surface defect extended along C(1) and placed at the origin

of C(2). It is defined by the singular behavior of some of the bosonic fields of the theory,

namely the 1-form gauge connection A and one of the three complex adjoint scalars, which

we call Φ. Near the location of the defect, i.e. for r → 0, these fields have the following

1See also the review [27].
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non-trivial profile:

A =


α0 1n0 0 · · · 0

0 α1 1n1 · · · 0
...

...
. . .

...

0 0 · · · αM−1 1nM−1

 dθ , (2.1)

and

Φ =


(β0 + i γ0) 1n0 0 · · · 0

0 (β1 + i γ1) 1n1 · · · 0
...

...
. . .

...

0 0 · · · (βM−1 + i γM−1) 1nM−1

 1

2z2
. (2.2)

Here 1nI denotes the (nI × nI) identity matrix; αI , βI and γI are real parameters and the

integers nI are such that
M−1∑
I=0

nI = N . (2.3)

This non-trivial field configuration breaks the U(N) gauge group to a Levi subgroup

U(n0)×U(n1)× · · · × U(nM−1) . (2.4)

If the gauge group is SU(N) one has to remove the overall U(1) factor from (2.4) and

subtract the trace from (2.1) and (2.2).

In the definition of the path-integral one is allowed to turn on a 2d θ-term, whose

coefficient we denote ηI for each factor in the unbroken Levi subgroup. This means that

in the path-integral we include the following phase factor:

exp

(
i
M−1∑
I=0

ηI

∫
D

TrU(nI) FI

)
. (2.5)

Altogether, we can say that a monodromy defect is characterized by the discrete parameters

nI , which constitute a partition of N , and by the four sets of real continuous parameters

{αI , βI , γI , ηI}, with I = 0, . . . ,M − 1.

One of the remarkable features of the N = 4 Yang-Mills theory is its invariance under

the action of the non-perturbative duality group SL(2,Z). It turns out that this duality

also acts naturally on the parameters of the surface operator as shown in [1]. In particular,

an element Λ =
(m n
p q

)
∈ SL(2,Z) induces the transformation

(αI , ηI) −→ (αI , ηI) Λ−1 = (q αI − p ηI ,−nαI +mηI) ,

(βI , γI) −→ |p τ + q| (βI , γI)
(2.6)

where τ is the complexified gauge coupling constant.
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2.2 Monodromy defects from fractional branes

Our primary goal is to derive the field profiles (2.1) and (2.2) as well as the topological

term (2.5) that characterize a monodromy GW defect from a world-sheet analysis of its

orbifold realization proposed in [22].

In this set-up, the gauge theory lives on a system of D3-branes in Type II B string

theory placed in a ZM orbifold space. The orbifold group acts on two complex planes

C(2) × C(3), the first of which is transverse to the defect inside the world-volume of the

D3-branes, while the second is transverse to the D3’s. In this realization, therefore, the

defect D is located at the fixed point of the orbifold action. The integer partition of N ,

(see (2.3)), which determines the unbroken Levi subgroup (2.4) corresponds to the choice

of the N -dimensional representation of ZM on the Chan-Paton indices of the D3-branes; in

other words, nI is the number of the fractional branes transforming in the I-th irreducible

representation of ZM . We shall refer to these fractional branes as D3-branes of type I.

What is missing in the KT description is how the orbifold realization encodes the

continuous parameters of the monodromy defect. Our goal is to fill this gap by showing

that they correspond to background values for fields belonging to the twisted sectors of

the closed string theory on the orbifold. In particular, the twisted background fields in the

NS/NS sector, which here we collectively denote as b, account for the parameters αI , βI
and γI which appear in (2.1) and (2.2), while the twisted scalar of the R/R sector, which

we denote c, accounts for the parameters ηI in the topological term (2.5).

Schematically, the mechanism goes as follows. In the presence of a closed string back-

ground certain open string fields Φopen attached to a fractional D3-brane of type I acquire

a non-zero one-point function, i.e. a tadpole. If we denote by Vopen the open string vertex

operator associated to Φopen and by Vb the closed string vertex operator corresponding to

b, the tadpole
〈
Vopen

〉
b;I

arises from an open/closed string correlator evaluated on a disk

which contains an insertion of bVb in the interior and of the vertex operator Vopen on the

boundary that lies on a D3-brane of type I:

〈
Vopen

〉
b;I
≡

Vopen

bVb

D3I

~k⊥
. (2.7)

Note that the open string vertex carries momentum along the D3-brane world-volume.

While its longitudinal components ~k‖ along the defect are set to zero by momentum con-

servation, its transverse components ~k⊥ need not be set to zero, as we have pictorially

indicated in the diagram. Indeed, the twisted fields, which are localized at the orbifold

fixed point, break translation invariance along the orbifold directions and thus ~k⊥ does not

need to be conserved. Therefore, the disk diagram represented above acts as a classical

source for Φopen, which acquires a non-trivial profile in the plane transverse to the defect.

The explicit expression of this profile near the defect is obtained by attaching a propagator

– 5 –
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to the source and taking the Fourier transform (FT ), namely

Φopen(~x⊥) = FT

[
1

~k2
⊥

〈
Vopen

〉
b;I

(~k⊥)

]
. (2.8)

The fields Φopen which get a tadpole from this mechanism arise from open strings with both

ends on the same D3-brane, so they have diagonal Chan-Paton factors. In the following

we will show in detail that the only non-zero tadpoles are those of the diagonal entries of

the transverse components2 A2 and Ā2 of the gauge connection 1-form and the diagonal

entries of the complex scalar Φ. These are precisely the fields which have a non-trivial

profile in a monodromy defect of GW type. Moreover, we will show that the functional

dependence on the transverse coordinates acquired by these fields through (2.8) coincides

with that of (2.1) and (2.2), thereby identifying the parameters αI , βI and γI with some

of the background fields of the twisted NS/NS sector.

The mechanism that encodes the non-trivial profile of the surface defect in a per-

turbative disk diagram is reminiscent of the way in which disks with mixed D3/D(–1)

boundary conditions account for the classical profile of the instanton solutions [28]. In that

case, however, the defect is point-like and the classical profile of the fields depends on all

world-volume coordinates; moreover, the role of parameters that appear in the profile is

played by the D3/D(–1) open string moduli, instead of the closed string moduli, as in the

present situation.

The twisted fields in the R/R sector also couple to the open string excitations through

disk diagrams analogous to the one in (2.7). It turns out that the only non-zero diagrams

of this type involve the diagonal entries of the longitudinal components A1 and Ā1 of

the gauge connection and do not depend on the transverse momentum ~k⊥. Thus, these

diagrams are not tadpoles and do not lead to the emission of open string fields with a

non-trivial profile; instead, they account for some terms of the defect effective action, and

in particular correspond to the θ-terms of (2.5). This implies that the parameters ηI arise

from the twisted R/R background fields.

The description of the monodromy defects that we propose is analogous to the holo-

graphic description of defects given by [15, 16] in terms of bubbling geometries. Also in

that case one gives a bulk description of the defect that accounts for all of its parameters

in terms a closed string background. The orbifold description that we will discuss in the

following is however quite different since it makes use of perturbative string theory and

world-sheet conformal field theory tools.

In the rest of the paper we will consider the particular case M = 2, corresponding to

simple defects. This case allows us to illustrate all the ingredients and mechanisms involved

in our proposal, while at the same time avoiding some of the more technical issues related

to the general ZM orbifold. Therefore, in order to make the presentation more transparent,

we shall discuss the generic surface defect in a companion paper [26].

2We use the complex notation A =
∑2

i=1

(
Aidz̄i + Āidzi

)
to facilitate the comparison with (2.1).
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3 Closed strings in the Z2 orbifold

We consider Type II B string theory propagating in a 10d target space given by the orbifold

C(1) ×
C(2) × C(3)

Z2
× C(4) × C(5) . (3.1)

The i-th complex plane C(i) is parametrized by the complex coordinates zi and z̄i defined as

zi =
x2i−1 + ix2i√

2
and z̄i =

x2i−1 − ix2i√
2

(3.2)

in terms of the ten real coordinates xµ, and the non-trivial element of the Z2 orbifold group

acts as follows

(z2, z3) −→ (−z2,−z3) and (z̄2, z̄3) −→ (−z̄2,−z̄3) . (3.3)

This breaks the SO(4) ' SU(2)+⊗SU(2)− isometry of the space C(2)×C(3) down to SU(2)+.

To describe closed strings in the orbifold (3.1) we use a complex notation analogous to

the one in (3.2). We denote the left-moving bosonic string coordinates as Zi(z) and Z̄i(z),

and the right-moving ones as Z̃i(z̄) and Z̃i(z̄). Here, z and z̄ are the complex coordinates

that parametrize the world-sheet of the closed strings. In a similar way, we introduce

the complex world-sheet fermionic coordinates Ψi(z) and Ψi(z), and their right-moving

counterparts Ψ̃i(z̄) and Ψ̃i(z̄). In all of our string computations we will use the convention

that 2πα′ = 1.

For the Z2 orbifold under consideration, the Hilbert space of the closed string, in

addition to the usual untwisted sector, possesses one twisted sector, associated to the non-

trivial conjugacy class of Z2. In the following, we are going to briefly review3 the main

properties of this twisted sector which will play a crucial role in our analysis.

3.1 Twisted closed string sectors

In the twisted sector the left-moving bosonic string coordinates Z2 and Z3 are anti-periodic:

Z2(e2πi z) = −Z2(z) and Z3(e2πi z) = −Z3(z) . (3.4)

Of course, the same happens for the complex conjugate coordinates Z2(z) and Z3(z). The

vacuum for these twisted bosonic fields is created by the operator

∆(z) = σ2(z)σ3(z) , (3.5)

where σ2(z) and σ3(z) are the twist fields [31] in the complex directions 2 and 3. Each of

these twist fields is a conformal operator of weight 1/8 so that ∆(z) has weight 1/4.

A completely analogous construction can be made in the right-moving sector, where

one has

Z̃2(e2πi z̄) = − Z̃2(z̄) and Z̃3(e2πi z̄) = − Z̃3(z̄) , (3.6)

3See for instance [23, 29, 30] for more detailed accounts of various properties of the CFT on a C2/Γ

orbifold space.
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and similarly for their complex conjugates. Correspondingly, one defines the right-moving

twist field ∆̃(z̄) of dimension 1/4.

As far as the fermionic coordinates are concerned, one has

Ψ2(e2πi z) = ∓Ψ2(z) and Ψ3(e2πi z) = ∓Ψ3(z) , (3.7)

where the upper signs refer to the NS sector and the lower ones to the R sector. The

complex conjugate coordinates Ψ2(z) and Ψ3(z) have similar monodromy properties. In

the right-moving sector, the fermionic fields are such that

Ψ̃2(e2πiz̄) = ∓ Ψ̃2(z̄) and Ψ̃3(e2πiz̄) = ∓ Ψ̃3(z̄) , (3.8)

with similar expressions for the complex conjugate coordinates Ψ̃2(z̄) and Ψ̃3(z̄).

As a consequence of these monodromy properties, in the expansion of the various

fields the moding is shifted by 1/2 with respect to their untwisted values. In particular,

the bosonic fields Z2, Z3, Z2 and Z3 have half-integer modes, while the fermions Ψ2, Ψ3,

Ψ2 and Ψ3 have integer modes in the NS sector, and half-integer modes in the R sector.

The same is true, of course, for their right-moving counterparts.

3.1.1 Massless states in the NS/NS sector

Since in the NS sector the fermionic coordinates along the directions 2 and 3 are periodic

and possess zero-modes, the vacuum of the world-sheet theory of the fields Ψ2 and Ψ3 is

degenerate and carries a representation of the 4d Clifford algebra formed by their zero-

modes. With respect to the SO(4) isometry of C(2) × C(3), these zero-modes build a 4d

Dirac spinor, which decomposes into its chiral and anti-chiral parts: (2,1)⊕ (1,2). Given

our choice for the embedding of the Z2 action into SO(4), the anti-chiral part (1,2) is not

invariant under the orbifold and is projected out. Therefore, we just remain with the chiral

spinor (2,1), whose two components are labeled by an index α. From the world-sheet point

of view, this chiral spinor is created by a 4d chiral spin field [32, 33]

Sα(z) (3.9)

which is a conformal field of weight 1/4.

Due to the twisted boundary conditions (3.4), the bosonic coordinates Z2 and Z3

along the orbifold do not possess zero-modes. The momentum can only be defined in the

directions Z1, Z4 and Z5 that have the standard behavior. We find it convenient to use a

complex notation for the momentum analogous to the one in (3.2), and thus we define

κi =
k2i−1 + i k2i√

2
and κ̄i =

k2i−1 − i k2i√
2

(3.10)

where k is the momentum in real notation. Then, in the twisted sector, the usual plane-

wave factor : ei k·X : that appears in the vertex operators describing string exictations is

written as follows

:ei κ̄·Z(z)+iκ·Z̄(z) : (3.11)

– 8 –
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where only κ1, κ4 and κ5 (and their complex conjugates) are defined. The operator (3.11)

is a conformal field of weight κ · κ̄ = 1
2k

2.

Finally, to describe physical vertex operators in the standard (−1)-superghost picture

of the NS sector, one introduces the vertex operator

:e−φ(z) : (3.12)

where φ(z) is the field appearing in the bosonization formulas of the superghost system [32].

The operator (3.12) is a conformal field of weight 1/2.

We have now all ingredients to construct a vertex operator that describes a physical

left-moving excitation at the massless level in the NS twisted sector. This is obtained by

taking the product of the twist field (3.5), the spin field (3.9), the plane-wave factor (3.11)

and the superghost term (3.12). In this way we obtain4

Vα(z) = ∆(z)Sα(z) e−φ(z) ei κ̄·Z(z)+iκ·Z̄(z) , (3.13)

which is a conformal field of weight 1 if κ·κ̄ = 1
2k

2 = 0. In the following we will consider the

closed strings as providing a constant background for the gauge theory, and thus in these

vertex operators we will set the momentum to zero. We also observe that the vertices (3.13)

are preserved by the GSO projection of the NS sector. Indeed, the sum of the spinor weights

minus the superghost charge is an even integer.

Exploiting the conformal properties of the various factors, it is easy to check that5

〈
Vα(z)Vβ(z′)

〉
=

(ε−1)αβ

(z − z′)2
, (3.14)

where

ε =

(
0 −1

+1 0

)
(3.15)

is the chiral part of the charge conjugation matrix Ĉ in four dimensions (see appendix A.1

for details and our conventions).

The same construction goes through in the right-moving sector, where one finds the

vertex operators

Ṽα(z̄) = ∆̃(z̄) S̃α(z̄) e−φ̃(z̄) ei κ̄·Z̃(z̄)+iκ· ˜̄Z(z̄) (3.16)

which have the same form of the two-point function as in (3.14) but with anti-holomorphic

coordinate dependence.

Overall, the massless spectrum in the twisted NS/NS sector contains four states de-

scribed by the vertices Vα(z) Ṽβ(z̄) in the (−1,−1)-superghost picture. The four indepen-

dent components can be decomposed into a real scalar b and a triplet bc (with c = 1, 2, 3),

4For simplicity, from now on in all vertex operators we will suppress the : : notation, but the normal

ordering will be always present.
5Here and in the following, we understand the δ-function enforcing momentum conservation.
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transforming, respectively, in the (1,1) and (3,1) representations of SO(4). They corre-

spond to the following vertex operators:

b ←→ Vb(z, z̄) = i εαβ Vα(z) Ṽβ(z̄) ,

bc ←→ Vbc(z, z̄) = (ε τc)αβ Vα(z) Ṽβ(z̄) ,
(3.17)

where τc are the usual Pauli matrices.

3.1.2 Massless states in the R/R sector

In the twisted R sector, the bosonic coordinates in the complex directions 2 and 3 have,

of course, the same monodromy properties as in the NS sector, whereas the corresponding

fermionic coordinates Ψ2, Ψ3 and their complex conjugates are anti-periodic. This means

that in those directions the world-sheet vacuum is non-degenerate. On the contrary, the

fermionic fields Ψ1, Ψ4 and Ψ5 and their complex conjugates are periodic as usual in the

R sector and possess zero-modes. Therefore the world-sheet vacuum in this twisted sector

is degenerate and carries a representation of the 6d Clifford algebra generated by the zero

modes of the periodic fermions. These form a Dirac spinor of SO(6) which decomposes

into a chiral part, transforming in the 4 of SO(6), plus an anti-chiral part transforming

in the 4̄.

From the world-sheet point of view, the chiral spinor is created by a 6d chiral spin

field [32, 33]

SA(z) , (3.18)

with A taking four values. Likewise, the anti-chiral spinor corresponds to the 6d anti-chiral

spin field

SȦ(z) , (3.19)

where also the dotted index Ȧ takes four values. Both SA and SȦ are conformal fields of

weight 3/8.

In the R sector there are two standard choices for the superghost picture: the (−1
2)-

picture and the (−3
2)-picture, created respectively by the operators

e−
1
2
φ(z) and e−

3
2
φ(z) , (3.20)

which are both conformal fields of weight 3/8.

The GSO projection selects the combinations SA(z) e−
1
2
φ(z) and SȦ(z) e−

3
2
φ(z), for

which the sum of the spinor weights minus the superghost charge is an even integer. Then,

using these ingredients we can build the following vertex operators

VA(z) = ∆(z)SA(z) e−
1
2
φ(z) ei κ̄·Z(z)+iκ·Z̄(z) , (3.21a)

VȦ(z) = ∆(z)SȦ(z) e−
3
2
φ(z) ei κ̄·Z(z)+iκ·Z̄(z) , (3.21b)

which are conformal fields of dimension 1 if κ · κ̄ = 1
2k

2 = 0. From the conformal properties

of the various components, it is easy to check that

〈
VA(z)VḂ(z′)

〉
=

(C−1)AḂ

(z − z′)2
, (3.22)
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where C is the charge conjugation matrix of the spinor representations of SO(6) (see ap-

pendix A.2).

The same construction goes on in the right-moving sector, where one finds the vertex

operators

ṼA(z̄) = ∆̃(z̄) S̃A(z̄) e−
1
2
φ̃(z̄) ei κ̄·Z̃(z̄)+iκ· ˜̄Z(z̄) , (3.23a)

ṼȦ(z̄) = ∆̃(z̄) S̃Ȧ(z̄) e−
3
2
φ̃(z̄) ei κ̄·Z̃(z̄)+iκ· ˜̄Z(z̄) , (3.23b)

which have the same two-point function as in (3.22).

Using the vertex operators (3.21) and (3.23) we can study the massless spectrum of the

twisted R/R sector. In the asymmetric (−1
2 ,−

3
2)-superghost picture the vertex operators

VA(z) ṼḂ(z̄) describe R/R potentials6 which have sixteen independent components. These

can be decomposed into a scalar c and a 2-index anti-symmetric tensor cMN of SO(6) that

correspond to the vertex operators

c ←→ Vc(z, z̄) = CAḂ V
A(z) ṼḂ(z̄) ,

cMN ←→ VcMN (z, z̄) = (C ΓMN )AḂ V
A(z) ṼḂ(z̄) ,

(3.24)

where ΓMN = 1
2 [ΓM ,ΓN ], with ΓM being the Dirac matrices of SO(6) (see appendix A.2).

4 Fractional D3-branes in the Z2 orbifold

We engineer the 4d gauge theory supporting the surface defect by means of fractional D3-

branes in the Z2 orbifold background (3.1). Differently from the case usually considered in

the literature [23] in which the fractional D3-branes are entirely transverse to the orbifold,

we take fractional D3-branes whose world-volume extends partially along the orbifold. In

particular, using the notation introduced in the previous section, we consider D3-branes

that extend along the complex directions 1 and 2, and are transverse to the complex

directions 3, 4 and 5. Thus, the Z2 orbifold acts on one complex longitudinal and one

complex transverse direction. This fact has two important consequences: firstly, on the D3-

brane world-volume, one finds the same content of massless fields as in N = 4 super Yang-

Mills theory; secondly, since the orbifold acts only on one of the two complex directions

of the world-volume, a 2d surface defect is naturally introduced in the gauge theory. Our

goal is to show that this defect is precisely a GW monodromy defect.

To do so we first clarify the properties of the fractional D3-branes in the Z2 orbifold

from the closed string point of view, using the boundary state formalism,7 and then from

the open string point of view by analyzing the world-volume massless fields.

6As shown in [34] the full BRST invariant vertex operators describing the R/R potentials in the asymmet-

ric supeghost picture are actually a sum of infinite terms with multiple insertions of superghost zero-modes.

Here we only consider the first one of these terms, since all the others decouple from the physical amplitudes

we will consider and thus can be neglected for our present purposes.
7For a review on the boundary state formalism, see for example [35, 36].
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4.1 Boundary states

In a Z2 orbifold there are two types of fractional D-branes that correspond to the two

irreducible representations of the orbifold group. We label these two types of D-branes

by an index I = 0, 1. The D-branes with I = 0 carry the trivial representation in which

the Z2 element g is represented by +1, while the D-branes with I = 1 carry the other

representation in which g is represented by −1. The two types of fractional branes therefore

only differ by a sign in front of the twisted sectors. With this in mind, the fractional D3-

branes can be represented in the boundary state formalism in the following schematic

way [35–37]:

|D3; I〉 = N |U〉+N ′ |T; I〉 with |T; I〉 = (−1)I |T〉 . (4.1)

Here N and N ′ are dimensionful normalization factors related to the brane tension, and

|U〉 and |T〉 are the untwisted and twisted Ishibashi states that enforce the identification

between the left and right moving modes in the untwisted and twisted sectors, respectively.

For our purposes we do not need to write the explicit expressions of these quantities which

can be obtained by factorizing the 1-loop open-string partition function in the closed string

channel, and thus we refer to the original literature and in particular to [37], where also

the case of D3-branes partially extending along the orbifold has been considered. However,

for clarity, we recall the essential information that will be needed in the following, namely

that both |U〉 and |T〉 have a component in the NS/NS sector and a component in the R/R

sector and that, after GSO projection, the twisted part of the boundary state is

|T〉 = |T〉NS + |T〉R (4.2)

with

|T〉NS = (Ĉγ3γ4)αβ |α〉 |β̃〉+ · · · , (4.3a)

|T〉R = (CΓ1Γ2)AḂ |A〉 |
˜̇B〉+ · · · . (4.3b)

Here the kets represent the ground states created by acting on the untwisted vacuum

with the vertex operators (3.13), (3.16) of the NS/NS twisted sector and with the vertex

operators (3.21a) and (3.23b) of the R/R twisted sector, namely

|α〉 = lim
z→0
Vα(z) |0〉 , |β̃〉 = lim

z̄→0
Ṽβ(z̄) |̃0〉 , (4.4a)

|A〉 = lim
z→0
VA(z) |0〉 , | ˜̇B〉 = lim

z̄→0
ṼḂ(z̄) |0̃〉 . (4.4b)

In (4.3) the ellipses stand for terms involving higher excited states which will not play

any role in our analysis. We remark that the coefficient (Ĉγ3γ4)αβ in the NS/NS com-

ponent (4.3a) is the appropriate one for our D3-branes since in the NS/NS twisted sector

the ground states are spinors of the 4d space spanned by the real coordinates x3, x4, x5

and x6, of which only the directions x3 and x4 are longitudinal to the D3-brane world-

volume. Therefore the product of the SO(4) γ-matrices γ3γ4 must appear in the prefactor.

Notice that the GSO projection only selects the chiral block of the matrix Ĉγ3γ4, as it is
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indicated by the undotted indices. Likewise, in the R/R component (4.3b) the coefficient

(CΓ1Γ2)AḂ is due to the fact that in R/R twisted sector the ground states are spinors in

the 6d space in which the real coordinates x1 and x2 belong to the D3-brane world-volume

while the real coordinates x7, x8, x9 and x10 are transverse. This explains why the prod-

uct of the SO(6) Γ-matrices Γ1Γ2 appears in the prefactor. Again the GSO projection

selects only the chiral/anti-chiral block of the matrix CΓ1Γ2, as indicated by the pair of

undotted/dotted indices.

The boundary state |D3; I〉 introduces a boundary on the closed string world-sheet

along which the left and right moving modes are identified. As we explain in detail in

appendix B, from (4.3) one can derive that the right moving parts of the twisted closed

string vertex operators are reflected on a boundary of type I with the following rules

Ṽα(z̄) −→ (−1)I(γ4γ3)αβ Vβ(z̄) , (4.5a)

ṼȦ(z̄) −→ (−1)I(Γ1Γ2)Ȧ
Ḃ
VḂ(z̄) . (4.5b)

These reflection rules will be important in computing closed string amplitudes involving

twisted fields in the presence of the fractional D3-branes.

4.2 The open string spectrum

We now analyze the spectrum of the massless excitations defined on the world-volume of

the fractional D3-branes. For definiteness we take a fractional D3-brane of type 0, but of

course completely similar considerations apply to a D3-brane of type 1. Since the world-

volume extends in the first two complex directions and the orbifold acts on the second one,

it is convenient, as remarked at the start of section 2.1, to distinguish the directions that are

along and transverse to the orbifold. We will label the longitudinal variables (momentum,

coordinates and so on) by a subscript ‖, which involves the components along the first

complex direction. We will similarly use the subscript ⊥ to label the components along the

second complex direction. The reason for these labels is that the first complex direction

is longitudinal to the surface defect that the D3-branes realize, while the second direction

is transverse to it. In particular, using the complex notation introduced in section 3, we

define the combinations
κ‖ ·Z‖ = κ1 Z

1 + κ1 Z
1 ,

κ⊥ ·Z⊥ = κ2 Z
2 + κ2 Z

2 ,
(4.6)

and
κ‖ ·Ψ‖ = κ1 Ψ1 + κ1 Ψ1 ,

κ⊥ ·Ψ⊥ = κ2 Ψ2 + κ2 Ψ2 .
(4.7)

Notice that under the Z2 orbifold parity, κ‖·Z‖ and κ‖·Ψ‖ are even, while κ⊥·Z⊥ and κ⊥·Ψ⊥
are odd.

Let us consider the bosonic NS sector. In the familiar case when the D3-branes are

completely transverse to the orbifold, the gauge vector field Aµ is typically represented in
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the (0)-superghost picture by the standard vertex operator(
i ∂Xµ + k · ψ ψµ

)
ei k·X . (4.8)

In our case things are different. First of all, in the plane wave factor ei k·X we have to

distinguish the parallel and perpendicular parts which behave differently under the orbifold,

and thus we are naturally led to consider the following structures

cos(κ⊥ ·Z⊥) eiκ‖·Z‖ ,

i sin(κ⊥ ·Z⊥) eiκ‖·Z‖ ,
(4.9)

which are respectively even and odd under Z2. Therefore, they can be combined with

other even and odd structures to make invariant vertex operators selected by the orbifold

projection. Similarly, also the k · ψ combination appearing in (4.8) has to be split into a

parallel and a perpendicular component.

Applying these considerations, it is not difficult to realize that the gauge field A1

along the parallel directions is described by the following vertex operator in the (0)-

superghost picture8

A1 −→ VA1 =
[(

i ∂Z1 + κ‖·Ψ‖Ψ1
)

cos(κ⊥·Z⊥) + iκ⊥·Ψ⊥Ψ1 sin(κ⊥·Z⊥)
]
eiκ‖·Z‖ . (4.10)

Each term in this expression is invariant under Z2. For instance, the terms i ∂Z1 or

κ‖·Ψ‖Ψ1, which are Z2-even, are multiplied with the cosine combination cos(κ⊥Z⊥) which

is also even, so that the product is invariant under the orbifold action. Similarly, the odd

term κ⊥·Ψ⊥Ψ1 is multiplied by the sine combination sin(κ⊥·Z⊥), which is also odd, to make

an even expression under Z2. Furthermore, it is easy to check that VA1 is a conformal field

of weight 1 if κ · κ̄ = 1
2k

2 = 0. The vertex operator for the complex conjugate component

A1 of the gauge field is simply obtained by replacing ∂Z1 with ∂Z1 and Ψ1 with Ψ1 in the

above expression.

The gauge field A2 along the second complex direction of the D3-brane world-volume

is instead described by the following vertex operator

A2 −→ VA2 =
[(

i ∂Z2 +κ‖·Ψ‖Ψ2
)

i sin(κ⊥·Z⊥) +κ⊥·Ψ⊥Ψ2 cos(κ⊥·Z⊥)
]
eiκ‖·Z‖ . (4.11)

Notice that the position of the cosine and sine combinations is different with respect

to (4.10), but this is precisely what is needed to obtain an invariant vertex in this case.

Again this vertex is a conformal field of weight 1 if the field is massless. The operator

describing the complex conjugate component Ā2 is obtained by replacing ∂Z2 with ∂Z2

and Ψ2 with Ψ2 in (4.11).

Let us now consider the massless scalar fields. Without the orbifold, on the D3-brane

world-volume there are three complex scalars that together with the gauge vector provide

the bosonic content of the N = 4 vector multiplet. When the orbifold acts entirely in

the transverse directions, only one of these scalars remains in the invariant spectrum, thus

8We consider the (0)-superghost picture since it is the relevant one for the applications discussed in

section 5, but of course our analysis can be done also in any other superghost picture of the NS sector.
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reducing the supersymmetry from N = 4 to N = 2. In our case, instead, when the orbifold

acts partially along the world-volume, all three complex scalars remain. Denoting them by

Φ and Φr with r = 4, 5, they are described by the following three Z2-invariant vertices

Φ −→ VΦ =
[(

i ∂Z3 + κ‖ ·Ψ‖Ψ3
)

i sin(κ⊥ ·Z⊥) + κ⊥ ·Ψ⊥Ψ3 cos(κ⊥ ·Z⊥)
]
eiκ‖·Z‖ . (4.12)

and

Φr −→ VΦr =
[(

i ∂Zr + κ‖·Ψ‖Ψr
)

cos(κ⊥·Z⊥) + iκ⊥·Ψ⊥Ψr sin(κ⊥·Z⊥)
]
eiκ‖·Z‖ . (4.13)

Since the scalars are massless, these vertices are conformal operators of weight 1.

A similar analysis can be repeated also for the fermionic R sector, where one can

find sixteen massless fermions that are the supersymmetric partners of the bosonic fields

listed above.

In conclusion we see that when the fractional D3-branes extend partially along the

orbifold, the latter does not project the open string spectrum by removing some excitations,

as it does when the fractional D3-branes are totally transverse, but instead it reorganizes

the fields in such a way that they behave differently along the ‖ and ⊥ subspaces into which

the 4d world-volume of the D3-branes is divided. Another piece of evidence for the defect

interpretation is the 1-loop open string partition function [37], which receives contributions

both from modes that propagate in all four dimensions of the world-volume and also from

modes that propagate only in the ‖ subspace. This is precisely what one expects for a

surface defect in the 4d gauge theory, extended along the ‖ subspace. Moreover, if we

consider a system made of n0 fractional D3-branes of type 0 and n1 fractional D3-branes

of type 1, we engineer a 4d theory with gauge group U(n0 + n1) broken to the Levi group

U(n0)×U(n1) at the orbifold fixed plane. In the case of special unitary groups, the overall

U(1) factor has to be removed.

5 Open/closed correlators

Our next step is to show that there are non-vanishing interactions between the twisted

closed string sectors discussed in section 3 and the open string fields introduced in the

previous section. In particular, we will show that there are non-vanishing amplitudes

corresponding to the diagram represented in (2.7). The reason why such open/closed

amplitudes exist is that a D-brane inserts a boundary in the closed string world-sheet

along which the left- and right-moving modes are identified. Thus, the two components

of the closed string vertex operators effectively behave as two open string vertices which

can have a non-vanishing interaction with a third open string vertex operator describing

an excitation of the gauge theory on the brane word-volume. In the following we are going

to systematically compute these open/closed string amplitudes, starting from the twisted

NS/NS sector.

5.1 Correlators with NS/NS twisted fields

As we discussed in the section 3.1.1, in the twisted NS/NS sector the fermionic fields in the

4d space where the Z2 orbifold acts have zero modes that build a spinor representation of
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SO(4). A fractional D3-brane that partially extends along the orbifold breaks this SO(4)

into SO(2)×SO(2). In this breaking, the singlet b remains, while the triplet bc ∈ (3,1)

decomposes into a scalar b′ and a doublet b± of complex conjugate fields. The vertex

operators corresponding to these four fields can be read from (3.17), which we rewrite here

for convenience

b ←→ Vb(z, z̄) = i εαβ Vα(z) Ṽ β(z̄) , (5.1a)

b′ ←→ Vb′(z, z̄) = (ετ3)αβ Vα(z) Ṽ β(z̄) , (5.1b)

b± ←→ Vb±(z, z̄) = (ετ±)αβ Vα(z) Ṽ β(z̄) (5.1c)

where τ± = (τ1±i τ2)/2. Since we are going to regard the closed string fields as a background

for the open string excitations, in all vertices (5.1) we set the momentum to zero.

Correlators with b. We begin by evaluating the couplings of the massless open string

fields of a fractional D3-brane of type I with the scalar b. These are given by〈
Vopen

〉
b;I

= b

∫
dz dz̄ dx

dVproj

〈
Vb(z, z̄)Vopen(x)

〉
I

(5.2)

where Vopen stands for any of the vertex operators described in section 4.2 and

dVproj =
dz dz̄ dx

(z − z̄)(z̄ − x)(x− z)
(5.3)

is the projective invariant volume element. In (5.2) the integrals are performed on the

string word-sheet. In particular z and z̄, where the close string vertex operator is inserted,

are points in the upper and lower half complex plane, respectively, while x is a point on

the real axis from which the open string is emitted. The integrand of (5.2) is〈
Vb(z, z̄)Vopen(x)

〉
I

= i εαβ
〈
Vα(z) Ṽβ(z̄)Vopen(x)

〉
I

= (−1)I i εαβ(γ4γ3)βγ
〈
Vα(z)Vγ(z̄)Vopen(x)

〉 (5.4)

where the second line follows from the reflection rules (4.5a). Our task is therefore to

compute the three-point functions
〈
Vα(z)Vγ(z̄)Vopen(x)

〉
for the various open string fields.

Let us start with the components of the gauge field that are longitudinal to the defect.

These are described by the vertex operator (4.10). Factorizing the resulting amplitude in

a product of correlation functions for the independent conformal fields, we find〈
Vα(z)Vγ(z̄)VA1(x)

〉
(5.5)

=
〈
e−φ(z) e−φ(z̄)

〉
×
[
i
〈
∂Z1(x)eiκ‖·Z‖(x)

〉〈
∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)

〉〈
Sα(z)Sγ(z̄)

〉
+
〈
eiκ‖·Z‖(x)

〉〈
∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)

〉〈
Sα(z)Sγ(z̄)

〉〈
κ‖ ·Ψ‖(x)Ψ1(x)

〉
+ i
〈
eiκ‖·Z‖(x)

〉〈
∆(z)∆(z̄) sin(k⊥ ·Z⊥)(x)

〉〈
Sα(z)Sγ(z̄)κ⊥ ·Ψ⊥(x)

〉〈
Ψ1(x)

〉]
.
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It is not difficult to realize that in each of the three lines in square brackets, there is always

one factor that vanishes due to normal ordering. For example, in the first line it is the

term containing i ∂Z1 that vanishes, while in the second and third line it is the last factor

involving the fermionic field Ψ1 that gives zero. Therefore,〈
Vα(z)Vγ(z̄)VA1(x)

〉
= 0 , (5.6)

so that 〈
VA1

〉
b;I

= 0 . (5.7)

Let us now consider the components of the gauge field that are transverse to the defect.

Using the corresponding vertex operator (4.11), we obtain〈
Vα(z)Vγ(z̄)VA2(x)

〉
=
〈
e−φ(z) e−φ(z̄)

〉〈
eiκ‖·Z‖(x)

〉
(5.8)

×
[
−
〈
∆(z)∆(z̄) ∂Z2(x) sin(k⊥ ·Z⊥)(x)

〉〈
Sα(z)Sγ(z̄)

〉
+ i
〈
∆(z)∆(z̄) sin(k⊥ ·Z⊥)(x)

〉〈
κ‖ ·Ψ‖(x)

〉〈
Sα(z)Sγ(z̄)Ψ2(x)

〉
+
〈
∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)

〉〈
Sα(z)Sγ(z̄)κ⊥ ·Ψ⊥(x)Ψ2(x)

〉]
.

As before, in the first and second lines inside the square brackets there are vanishing factors;

instead, the third line is not zero and we remain with〈
Vα(z)Vγ(z̄)VA2(x)

〉
=
〈
e−φ(z) e−φ(z̄)

〉〈
eiκ‖·Z‖(x)

〉〈
∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)

〉
×
〈
Sα(z)Sγ(z̄)κ⊥ ·Ψ⊥(x)Ψ2(x)

〉
.

(5.9)

Each correlator in this expression can be easily evaluated using standard conformal field

theory methods; in particular we have〈
e−φ(z) e−φ(z̄)

〉
=

1

z − z̄
, (5.10a)

〈
eiκ‖·Z‖(x)

〉
= δ(2)(κ‖) , (5.10b)〈

∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)
〉

=
1

(z − z̄)
1
2

, (5.10c)

〈
Sα(z)Sγ(z̄)ψm(x)ψn(x)

〉
=

1

2

(γnγmĈ
−1)αγ

(z − z̄)−
1
2 (z − x)(z̄ − x)

. (5.10d)

The last correlator implies that〈
Sα(z)Sγ(z̄)κ⊥ ·Ψ⊥(x)Ψ2(x)

〉
= iκ2

〈
Sα(z)Sγ(z̄)ψ3(x)ψ4(x)

〉
= i

κ2

2

(γ4γ3Ĉ
−1)αγ

(z − z̄)−
1
2 (z − x)(z̄ − x)

.
(5.11)

Putting everything together, we obtain

〈
Vα(z)Vγ(z̄)VA2(x)

〉
= i

κ2

2

(γ4γ3Ĉ
−1)αγ

(z − z̄)(z − x)(z̄ − x)
δ(2)(κ‖) . (5.12)
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Inserting this result in (5.4) and performing the corresponding γ-matrix algebra, in the

end we find 〈
VA2

〉
b;I

= (−1)I+1 b κ2 δ
(2)(κ‖) . (5.13)

As is clear from this expression, the momentum conservation occurs only in the longitudinal

directions, whereas the transverse momenta κ2 and κ̄2 can be arbitrary. This fact implies

that (5.13) can be interpreted as a tadpole-like source for the gauge field A2 which acquires

a non-trivial profile in the transverse space. We will explicitly compute this profile in the

following section.

The calculation of the couplings of b with the complex scalar Φ gauge theory proceeds

along the same lines. One finds that the only non-vanishing contribution to the correlation

function is given by〈
Vα(z)Vγ(z̄)VΦ(x)

〉
=
〈
e−φ(z) e−φ(z̄)

〉〈
eiκ‖·Z‖(x)

〉〈
∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)

〉
×
〈
Sα(z)Sγ(z̄)κ⊥ ·Ψ⊥(x)Ψ3(x)

〉
.

(5.14)

The last factor is easily computed using (5.10d) with the result

〈
Sα(z)Sγ(z̄)κ⊥ ·Ψ⊥(x)Ψ3(x)

〉
=
κ2

4

(
(γ5 + i γ6)(γ3 − i γ4)Ĉ−1

)αγ
(z − z̄)−

1
2 (z − x)(z̄ − x)

+
κ̄2

4

(
(γ5 + i γ6)(γ3 + i γ4)Ĉ−1

)αγ
(z − z̄)−

1
2 (z − x)(z̄ − x)

.

(5.15)

This implies that〈
Vα(z)Vγ(z̄)VΦ(x)

〉
=

[(
κ2
4 (γ5 + i γ6)(γ3 − i γ4) + κ̄2

4 (γ5 + i γ6)(γ3 + i γ4)
)
Ĉ−1

]αγ
(z − z̄)(z − x)(z̄ − x)

δ(2)(κ‖) . (5.16)

When we plug this expression into (5.4) and perform the resulting γ-matrix algebra we get

zero, so that 〈
VΦ

〉
b;I

= 0 (5.17)

Finally, considering the scalars Φr, we find that〈
Vα(z)Vγ(z̄)VΦr(x)

〉
= 0 (5.18)

since, like for A1, the resulting correlator always contains a vanishing factor. Therefore,〈
VΦr

〉
b;I

= 0 . (5.19)

Correlators with b′. Let us now consider the couplings with the twisted scalar b′ whose

vertex operator (5.1b) has the polarization ετ3. The vanishing of the correlators (5.6)

and (5.18) shows that A1 and Φr do not couple to any NS/NS twisted field, including b′.

Also the non-vanishing correlators (5.12) and (5.16) give a zero result for b′ due to the

γ-matrix algebra. Therefore the field b′ does not couple to any of the massless open string

fields of the gauge theory:〈
VA1

〉
b′;I

=
〈
VA2

〉
b′;I

=
〈
VΦ

〉
b′;I

=
〈
VΦr

〉
b′;I

= 0 . (5.20)
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Correlators with b±. The couplings of the doublet b± with the open string fields can be

computed along the same lines. We simply have to use the correlators (5.6), (5.12), (5.16)

and (5.18) and the polarizations (ετ±) corresponding to b±. Proceeding in this way we find〈
VA1

〉
b±;I

=
〈
VA2

〉
b±;I

=
〈
VΦ

〉
b−;I

=
〈
VΦr

〉
b±;I

= 0 . (5.21)

The vanishing of the coupling of A2 with b± and of the coupling of Φ with b− is again due

to the structure of the resulting combinations of γ-matrices which have a vanishing trace.

On the other hand, the terms proportional to κ̄2 in (5.16) yield a non-zero result when

contracted with the polarization of b+, leading to〈
VΦ

〉
b+;I

= (−1)I+1 i b+ κ̄2 δ
(2)(κ‖) . (5.22)

5.2 Correlators with R/R twisted fields

Let us now consider the twisted fields of the R/R sector that we discussed in section 3.1.2.

In the twisted R/R sector the fermionic fields possess zero modes in the six dimensions that

are orthogonal to the Z2 orbifold. They realize spinor representations of SO(6), but when

a fractional D3-brane is inserted, this group is broken to SO(2)×SO(4). We are interested

in giving a constant background value to some scalars that remain after this breaking.

The scalar c obviously remains, while the anti-symmetric tensor cMN ∈ 15 decomposes in

various representations of the unbroken subgroup. In particular, we will consider only the

component c12 which is a scalar of SO(2)×SO(4) that we denote c′. The vertex operators

corresponding to c and c′ are given in (3.24) which we rewrite here for convenience:

c ←→ Vc(z, z̄) = CAḂ V
A(z) ṼḂ(z̄) , (5.23a)

c′ ←→ Vc′(z, z̄) = (C Γ12)AḂ V
A(z) ṼḂ(z̄) . (5.23b)

Again we take these vertices at zero momentum since we want to regard the closed string

fields as a constant background.

Correlators with c. The mixed correlators between the R/R twisted scalar c and the

open string massless fields of a D3-brane of type I are given by〈
Vopen

〉
c;I

= c

∫
dz dz̄ dx

dVproj

〈
Vc(z, z̄)Vopen(x)

〉
I

(5.24)

with 〈
Vc(z, z̄)Vopen(x)

〉
I

= CAḂ
〈
VA(z) ṼḂ(z̄)Vopen(x)

〉
I

= (−1)I CAḂ(Γ1Γ2)Ḃ
Ċ

〈
VA(z)V Ċ(z̄)Vopen(x)

〉
.

(5.25)

where the last step follows from the reflection rules (4.5b).

The first coupling we consider is the one with the gauge field A1. Using the vertex

operator (4.10) we find that there is only a single structure contributing to the amplitude,

namely〈
VA(z)V Ċ(z̄)VA1(x)

〉
=
〈
e−

1
2
φ(z) e−

3
2
φ(z̄)
〉〈

eiκ‖·Z‖(x)
〉〈

∆(z)∆(z̄) cos(k⊥ ·Z⊥)(x)
〉

×
〈
SA(z)SĊ(z̄)κ‖ ·Ψ‖(x)Ψ1(x)

〉
.

(5.26)
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The second and third factors are given in (5.10b) and (5.10c), while the other factors are

obtained from the standard conformal field theory results, namely〈
e−

1
2
φ(z) e−

3
2
φ(z̄)
〉

=
1

(z − z̄)
3
4

, (5.27a)

〈
SA(z)SĊ(z̄)ψM (x)ψN (x)

〉
=

1

2

(ΓMΓNC
−1)AĊ

(z − z̄)−
1
4 (z − x)(z̄ − x)

. (5.27b)

The last correlator implies that〈
SA(z)SĊ(z̄)κ‖ ·Ψ‖(x)Ψ1(x)

〉
= iκ1

〈
SA(z)SĊ(z̄)ψ1(x)ψ2(x)

〉
= i

κ1

2

(Γ1Γ2C
−1)AĊ

(z − z̄)−
1
4 (z − x)(z̄ − x)

(5.28)

so that from (5.26) we get

〈
VA(z)V Ċ(z̄)VA1(x)

〉
= i

κ1

2

(Γ1Γ2C
−1)AĊ

(z − z̄)(z − x)(z̄ − x)
δ(2)(κ‖) . (5.29)

Plugging this expression into (5.24) and performing the algebra on the Γ-matrices in the

end we obtain 〈
VA1

〉
c;I

= (−1)I+1 2 i c κ1 δ
(2)(κ‖) . (5.30)

There are no other non-trivial couplings of c since for A2, Φ and Φr the three-point functions

vanish at the level of conformal field theory correlators, namely〈
VA(z)V Ċ(z̄)VA2(x)

〉
=
〈
VA(z)VĊ(z̄)VΦ(x)

〉
=
〈
VA(z)VĊ(z̄)VΦr(x)

〉
= 0 . (5.31)

Obviously this implies that〈
VA2

〉
c;I

=
〈
VΦ

〉
c;I

=
〈
VΦr

〉
c;I

= 0 . (5.32)

Correlators with c′. In this case we can be extremely brief since the scalar c′ does not

couple to any of the massless bosonic open string fields. Indeed we have〈
VA1

〉
c′;I

=
〈
VA2

〉
c′;I

=
〈
VΦ

〉
c′;I

=
〈
VΦr

〉
c′;I

= 0 . (5.33)

The last three equalities clearly follow from (5.31), while the vanishing of the coupling of

A1 is due to the fact that the Γ-matrices in the numerator of (5.29) give a zero result when

they are contracted with the polarization (C Γ12)AḂ. Thus, like b′, the scalar c′ will also

not play any role in our further analysis.

6 Continuous parameters of surface operators from world-sheet correla-

tors

In this section we provide an interpretation of the non-vanishing couplings between the

closed string massless fields of the twisted sectors and the massless open string fields on

the fractional D3-branes.
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The twisted scalar b of the NS/NS sector produces a tadpole-like source for the gauge

field A2 given in (5.13), which depends on the orthogonal momentum to the surface defect.

This source, which is localized at the orbifold fixed point where b is defined, gives rise to a

non-trivial profile for A2 in the transverse directions: this profile is obtained by computing

the Fourier transform of the tadpole after including the massless propagator

1

2(|κ‖|2 + |κ⊥|2)
=

1

k2
1 + k2

2 + k2
3 + k2

4

. (6.1)

This procedure is the strict analogue of what has been discussed in [38] for the profile of

the gravitational fields emitted by a Dp-brane and in [28] for the instanton profile of the

gauge fields of a D3-brane in the presence of D-instantons.

One new feature in this orbifold case is that for functions f+ and f− which are, re-

spectively, even and odd under Z2, the Fourier transform is given by

FT [f+](z) =

∫
d2κ‖ d

2κ⊥

(2π)2
cos(κ⊥ ·z⊥) eiκ‖·z‖ f+(κ) ,

FT [f−](z) =

∫
d2κ‖ d

2κ⊥

(2π)2
i sin(κ⊥ ·z⊥) eiκ‖·z‖ f−(κ) .

(6.2)

Let us consider for simplicity a fractional D3-brane type 0. Applying the above proce-

dure, the profile of its gauge field A2 in configuration space induced by the NS/NS twisted

scalar b is

A2 =

∫
d2κ‖ d

2κ⊥

(2π)2
i sin(κ⊥ ·z⊥) eiκ‖·z‖

〈
VA2

〉
b;0

2(|κ‖|2 + |κ⊥|2)

= −i b

∫
d2κ⊥
(2π)2

sin(κ⊥ ·z⊥)
κ2

2|κ⊥|2

(6.3)

where in the second line we have used (5.13) with I = 0 and taken into account the δ-

function enforcing momentum conservation in the parallel directions to perform the integral

over κ‖. This shows that, as anticipated, the propagation of the source is only in the

transverse directions. With a simple calculation we can see that∫
d2κ⊥
(2π)2

sin(κ⊥ ·z⊥)
κ2

2|κ⊥|2
=

1

4πz̄2
, (6.4)

so that

A2 = − i b

4πz̄2
. (6.5)

The component Ā2 of the gauge field also has a non-trivial profile which is given by the

complex conjugate of (6.5).

As we have seen in the previous section, there are no other tadpole-like sources for A2,

so that (6.5) is the full result. One might think that the R/R scalar c can act as a source for

the longitudinal component A1 of the gauge field in view of (5.30). However, if one takes

into account the δ-function that enforces momentum conservation along the first complex

direction, one easily realizes that this actually vanishes. Therefore, the vector field is only

sourced by the NS/NS twisted scalar b which yields (6.5) and its complex conjugate.
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In conclusion, the gauge field on a fractional D3-brane of type 0 in the Z2 orbifold

acquires the following profile

A = A · dx = A2 dz̄2 + Ā2 dz2 = − i b

4π

(
dz̄2

z̄2
− dz2

z2

)
= − b

2π
dθ (6.6)

where θ is the polar angle in the C(2) plane transverse to the defect. If we take a fractional

D3-brane of type 1, we obtain the same profile but with an overall minus sign due to

the different sign in twisted component of the boundary state and in the reflection rules

(see (4.5a)).

Let us now consider the scalar field Φ, the only other open string field that has a

non-vanishing tadpole produced by b+. Applying the same procedure discussed above and

using (5.22), for a fractional D3-brane of type 0 we obtain

Φ =

∫
d2κ‖ d

2κ⊥

(2π)2
eiκ‖·z‖ i sin(κ⊥ ·z⊥)

〈
VΦ

〉
b+;0

2(|κ‖|2 + |κ⊥|2)

= b+

∫
d2κ⊥
(2π)2

sin(κ⊥ ·z⊥)
κ̄2

2|κ⊥|2
=

b+
4πz2

.

(6.7)

Of course, for a fractional D3-brane of type 1 we get the same result with an overall minus

sign.

It is quite straightforward to generalize these findings to the case of a system made of

n0 fractional D3-branes of type 0 and n1 fractional D3-branes of type 1, which describes a

gauge theory with group U(n0 + n1) broken to the Levi group U(n0)×U(n1). In fact, we

simply obtain

A = − b

2π

(
1n0 0

0 −1n1

)
dθ , (6.8a)

Φ =
b+
4π

(
1n0 0

0 −1n1

)
1

z2
. (6.8b)

This is precisely the expected profile for a monodromy defect of GW type. Comparing

with (2.1) and (2.2) we see that the continuous parameters of the surface defect are related

to the background fields of the NS/NS twisted sector as follows

αI = (−1)I+1 b

2π
, βI = (−1)I

Re(b+)

2π
, γI = (−1)I

Im(b+)

2π
. (6.9)

Notice that in our realization we have
∑

I αI =
∑

I βI =
∑

I γI = 0. This is not a limitation

since a generic GW solution can always be brought to this form by adding a U(1) term

proportional to the identity without changing the Levi subgroup U(n0)×U(n1).

To obtain the profile in the case of special unitary groups we have to remove the overall

U(1) factor. This is simply done as follows

A 7−→ A− 1

n0 + n1

(
Tr A

)
1n0+n1 = − b

2π

(
n1

n0+n1
1n0 0

0 − n0
n0+n1

1n1

)
dθ , (6.10a)

Φ 7−→ Φ− 1

n0 + n1

(
Tr Φ

)
1n0+n1 =

b+
4π

(
n1

n0+n1
1n0 0

0 − n0
n0+n1

1n1

)
1

z2
. (6.10b)
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Let us now comment on the meaning of the result (5.30), which indicates a coupling

between the longitudinal component of the gauge field A1 and the twisted scalar c in the

R/R sector. This cannot be interpreted as a source for the gauge field A1 because it is

not proportional to the transverse momentum but to the longitudinal one, which is set

to zero by the momentum conserving δ-function. However, a different and interesting

interpretation is possible. If we multiply the amplitude (5.30) and its complex conjugate

by the corresponding polarizations of the gauge field, namely Ā1 and A1, the resulting

sum can be interpreted as an effective interaction term involving the gauge field strength

in the longitudinal directions. Such a term can be non-zero even in the presence of the

momentum conserving δ-function provided the field strength is kept fixed. To make this

explicit, let us consider a D3-brane of type 0 and use (5.30) for I = 0. Then we have

Ā1

〈
VA1

〉
c;0

+A1

〈
VĀ1

〉
c;0

= −2 i c (κ1 Ā1 − κ̄1A1) δ(2)(k‖) = 2 i c F̃0 δ
(2)(κ‖) (6.11)

where F̃0 = κ̄1A1−κ1 Ā1 is the (momentum space) field strength in the 2d space where the

surface defect is extended. The Fourier transform of (6.11), computed according to (6.2), is

i c

∫
d2k‖ F̃0 δ

(2)(κ‖) × 2 δ(2)(z⊥) =
i c

2π

∫
d2x‖ F0 × 2 δ(2)(z⊥) (6.12)

where F0 is the field strength in configuration space. If we assume that this 2d space instead

of being simply C is a manifold D where the gauge field strength has a non-vanishing first

Chern class, then (6.12) can be interpreted as an effective interaction term localized9 on

D, meaning that in the path-integral of the underlying (abelian) gauge theory one has the

following phase factor

exp

(
i c

2π

∫
D
F0

)
. (6.13)

If we extend this argument to a system made of n0 fractional D3-branes of type 0 and n1

fractional D3-branes of type 1, the phase factor becomes

exp

(
i
∑
I

(−1)I
c

2π

∫
D

TrU(nI) FI

)
(6.14)

which has exactly the same form of the one of the GW monodromy defect given in (2.5) with

ηI = (−1)I
c

2π
. (6.15)

In the case of special unitary groups, we have to remove the overall U(1) factor and this

leads to

exp

(
i c

2π

n1

n0 + n1

∫
D

TrU(n0) F0 −
i c

2π

n0

n0 + n1

∫
D

TrU(n1) F1

)
. (6.16)

9Notice that the term that localizes on the defect placed at the origin is 2 δ(2)(z⊥), where the factor of

2 compensates the fact that the orbifold halves the volume of the transverse space.
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7 Conclusions

We have shown that a system of n0 fractional D3-branes of type 0 and n1 fractional D3-

branes of type 1 that partially extend along a Z2 orbifold, supports a gauge theory with

a surface defect of the GW type, whose discrete data (n0, n1) are encoded in the repre-

sentation of the orbifold group assigned to the fractional D3-branes and whose continuous

data are encoded in the expectation values of the closed string fields in the orbifold twisted

sectors according to

{αI , βI , γI , ηI} =

{
(−1)I+1 b

2π
, (−1)I

Re(b+)

2π
, (−1)I

Im(b+)

2π
, (−1)I

c

2π

}
. (7.1)

In the case of special unitary gauge groups, the parameters with I = 0 must be multiplied

by n1
n0+n1

and those with I = 1 by n0
n0+n1

in order to enforce the decoupling of the overall

U(1) factor.

This explicit realization of the continuous parameters of the surface defect in terms of

closed string fields allows us to also discuss how they behave under duality transformations.

To do so we first recall that, from a geometric point of view, the twisted scalars b and c

arise by wrapping the NS/NS and R/R 2-form fields B(2) and C(2) of Type II B string

theory around the exceptional 2-cycle ω2 at the orbifold fixed point [30, 39, 40], namely

b =

∫
ω2

B(2) , c =

∫
ω2

C(2) . (7.2)

Using this fact, we can then rewrite the parameters αI and ηI given in (7.1) in the following

suggestive way

αI =
(−1)I+1

2π

∫
ω2

B(2) , ηI =
(−1)I

2π

∫
ω2

C(2) . (7.3)

These formulas, including the relative minus sign, are reminiscent of those obtained in [15,

16] where a holographic representation of the GW surface defects has been proposed in

terms of bubbling geometries, which are particular solutions of Type II B supergravity

with an AdS5 × S5 asymptotic limit. Our explicit realization in terms of perturbative

string theory, however, is very different, although the identification of the parameters αI
and ηI with the holonomies of the two 2-forms of Type II B is similar.

The exceptional 2-cycle ω2 has a vanishing size in the orbifold limit but when the

orbifold singularity is resolved in a smooth space, it acquires a finite size. The other three

fields of the twisted NS/NS sector, b′ and b±, correspond precisely to the blow-ups of

the orbifold fixed point [29, 40]. In particular b′ is the Kähler modulus while b± are the

complex structure moduli of the blown-up 2-cycle. Hence they are directly related to the

string-frame metric Gµν of the Type II B string theory.

This geometric interpretation fixes the duality transformations of the twisted fields

since they are inherited from those of the parent Type II B fields from which they descend.

It is well-know10 that under a duality transformation Λ =
(m n
p q

)
∈ SL(2,Z) the two 2-forms

10See, for instance, [41].
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rotate among themselves according to(
C(2)

B(2)

)
−→

(
m n

p q

)(
C(2)

B(2)

)
(7.4)

while the string-frame metric Gµν transforms as

Gµν −→ |p τ + q|Gµν (7.5)

where τ is the axio-dilaton field. Therefore, under a duality b and c rotate as in (7.4) and

b± transform as the metric in (7.5). From this and the identification (7.1), it follows with

straightforward manipulations that the surface operator parameters transform as

(αI , ηI) −→ (q αI − p ηI ,−nαI +mηI) ,

(βI , γI) −→ |p τ + q| (βI , γI)
(7.6)

Comparing with (2.6), we see that this is precisely the expected behavior of the parameters

of the GW defect as originally shown in [1]. This agreement is an important check of our

proposal for the realization of surface operators using perturbative string theory.
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A Dirac matrices

In this appendix, we define in detail our conventions for the Dirac matrices used in the

main text.

A.1 4d

We consider the 4d Euclidean space spanned by the coordinates xm with m ∈ {3, 4, 5, 6}.
These are the real coordinates corresponding to the complex coordinates z2 and z3

(see (3.2)) along which the Z2 orbifold acts.

An explicit realization of the Dirac matrices γm satisfying the 4d Euclidean Clifford

algebra

{γm, γn} = 2δmn , (A.1)

is given by

γ3 =

(
0 τ1

τ1 0

)
, γ4 =

(
0 −τ2

−τ2 0

)
, γ5 =

(
0 τ3

τ3 0

)
, γ6 =

(
0 i 12

−i 12 0

)
(A.2)

where τc are the usual Pauli matrices and 12 is the 2× 2 identity matrix.
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The chirality matrix γ̂ is given by

γ̂ = −γ3γ4γ5γ6 =

(
12 0

0 −12

)
. (A.3)

This shows that in this basis a 4d Dirac spinor is written as(
Sα

Sα̇

)
(A.4)

where α and α̇ label, respectively, the chiral and anti-chiral components.

Finally, the charge conjugation matrix Ĉ is given by

Ĉ =

(
ε 0

0 −ε

)
(A.5)

where ε = −i τ2 (see (3.15)), and is such that

Ĉ γm Ĉ
−1 = (γm)t (A.6)

where t denotes the transpose.

A.2 6d

We consider the 6d Euclidean space spanned by the coordinates xM with M ∈
{1, 2, 7, 8, 9, 10}. These are the real coordinates corresponding to the complex coordinates

z1, z4 and z5 (see (3.2)) that are transverse to the Z2 orbifold.

An explicit realization of the Dirac matrices ΓM satisfying the 6d Euclidean Clifford

algebra

{ΓM ,ΓN} = 2δMN , (A.7)

is given by

Γ1 =


0 0 −i 12 0

0 0 0 −i 12

i 12 0 0 0

0 i 12 0 0

 , Γ2 =


0 0 τ3 0

0 0 0 −τ3

τ3 0 0 0

0 −τ3 0 0

 ,

Γ7 =


0 0 −τ2 0

0 0 0 τ2

−τ2 0 0 0

0 τ2 0 0

 , Γ8 =


0 0 τ1 0

0 0 0 −τ1

τ1 0 0 0

0 −τ1 0 0

 ,

Γ9 =


0 0 0 −i 12

0 0 i 12 0

0 −i 12 0 0

i 12 0 0 0

 , Γ10 =


0 0 0 12

0 0 12 0

0 12 0 0

12 0 0 0

 .

(A.8)
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The chirality matrix Γ̂ is

Γ̂ = i Γ1Γ2Γ7Γ8Γ9Γ10 =


12 0 0 0

0 12 0 0

0 0 −12 0

0 0 0 −12

 . (A.9)

This shows that in this basis a 6d Dirac spinor is written as(
SA

SȦ

)
(A.10)

where A and Ȧ label, respectively, the chiral and anti-chiral components.

The charge conjugation matrix C is

C =


0 0 0 ε

0 0 ε 0

0 −ε 0 0

−ε 0 0 0

 (A.11)

where, as before, ε = −i τ2. The above charge conjugation matrix is such that

C ΓM C−1 = −(ΓM )t . (A.12)

B Reflection rules

When the world-sheet of the closed string has a boundary, there are non trivial 2-point

functions between the left and right moving parts. We are interested in computing these

2-point functions for the massless fields of the twisted sectors when the boundary is created

by a fractional D3-brane of type I in the Z2 orbifold discussed in section 4.

In the boundary state formalism (see for instance the reviews [35, 36]) the boundary

created by a D-brane is the unit circle, i.e. the set of points corresponding to the world-

sheet time τ = 0 where the boundary state is inserted. The points inside the unit circle

define the disk D. When we insert a closed string inside D, the left and right moving

modes are reflected at the boundary, and a non-vanishing correlator between them arises.

For example, considering the twisted NS/NS sector and in particular the massless states

described by the vertex operators (3.17) in the presence of a fractional D3-brane of type

I, we have

〈Vα(w) Ṽβ(w̄)〉I = 〈T ; I| Vα(w) Ṽβ(w̄) |0〉|0̃〉

= (−1)I NS〈T | Vα(w) Ṽβ(w̄) |0〉|0̃〉
(B.1)

for w and w̄ ∈ D. Here we have used the boundary state to represent the fractional D3-

brane of type I (see (4.1)) and taken into account that only the NS component of its twisted

part is relevant for the calculation. As in the main text, |0〉 and |̃0〉 denote the left and

right vacua.
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On the other hand, conformal invariance implies that the disk 2-point function of Vα

and Ṽβ , which are conformal fields of weight 1, has the following form

〈Vα(w) Ṽβ(w̄)〉I =
Mαβ
I

(1− ww̄)2
(B.2)

where Mαβ
I is a constant to be determined. Combining (B.1) and (B.2), we easily see that

Mαβ
I = lim

w→0
lim
w̄→0
〈Vα(w) Ṽβ(w̄)〉I = (−1)I NS〈T |α〉|β̃〉 (B.3)

where |α〉 and |β̃〉 are the left and right ground states defined in (4.4a). Thus, the disk

2-point function (B.2) becomes

〈Vα(w) Ṽβ(w̄)〉I = (−1)I
NS〈T |α〉|β̃〉
(1− ww̄)2

. (B.4)

Let us now map this result to the complex plane by means of the Cayley map

w =
z − i

z + i
, w̄ =

z̄ + i

z̄ − i
. (B.5)

Notice that w is mapped to the upper half-complex plane and w̄ to the lower half. Then,

we have

〈Vα(z) Ṽβ(z̄)〉I = 〈Vα(w) Ṽβ(w̄)〉I
dw

dz

dw̄

dz̄
= (−1)I+1 NS〈T |α〉|β̃〉

(z − z̄)2
. (B.6)

Comparing with (3.14) and using the so-called doubling trick, we are led to introduce the

following reflection rule

Ṽβ(z̄) −→ (RI)
β
γ Vγ(z̄) (B.7)

with

(RI)
β
γ = (−1)I Ĉγα NS〈T |α〉|β̃〉 = (−1)I+1 εγα NS〈T |α〉|β̃〉 (B.8)

where in the second step we have used the fact that the chiral part of the charge conjugation

matrix is ε (see A.5)). Using the expression (4.3a) for the twisted boundary state in the

NS/NS sector, it is easy to show that

NS〈T |α〉|β̃〉 = (γ4γ3Ĉ
−1)βα . (B.9)

Inserting this into (B.8), we find

(RI)
β
γ = (−1)I(γ4γ3)βγ (B.10)

in agreement with (4.5a) of the main text.

The reflection matrix for the R sector can be obtained in the same way. Indeed, in the

presence of a D3-brane of type I the left and right-moving vertex operators VA and ṼḂ

have the following 2-point function

〈VA(z) ṼḂ(z̄)〉I = (−1)I+1 R〈T |A〉| ˜̇B〉
(z − z̄)2

. (B.11)
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Comparing with (3.22), we are led to introduce the reflection rule

ṼḂ(z̄) −→ (RI)
Ḃ
Ċ
V Ċ(z̄) (B.12)

such that

(RI)
Ḃ
Ċ

= (−1)I+1CĊA R〈T |A〉| ˜̇B〉 . (B.13)

From the expression (4.3b) for the twisted boundary state in the R/R sector, one can

show that

R〈T |A〉| ˜̇B〉 = (Γ2Γ1C
−1)ḂA . (B.14)

Inserting this into (B.13), we therefore find

(RI)
Ḃ
Ċ

= (−1)I(Γ1Γ2)Ḃ
Ċ

(B.15)

in agreement with (4.5b) of the main text.
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