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The development of offshore wind farms, potentially, requires the investigation of two principal 

scour issues, that related to the presence of a pipeline/cable and that due to the presence of the 

turbine structures. This paper presents a case study of an offshore wind farm from the west coast of 

the UK at Scarweather Sands in the Bristol Channel. A comparison is made between an empirical 

formula approach to scour prediction against field data. Only the current alone case has been 

considered due to the low wave activity over the period of the survey. 

1 Introduction 

1.1. Scour Issues 

Placing a structure in the marine environment will lead to a change in the flow pattern in 

its immediate locality due to its presence. These changes will result in one or more of the 

following occurring: 

 

• Flow contraction 

• Horseshoe vortex formation in front of the structure 

• Lee-wake vortices behind the structure (with or without vortex shedding) 

• Reflection and diffraction of waves 

• Wave breaking 

• Turbulence generation 

• Pressure differentials in the soil leading to liquefaction 

 

With the occurrence of these phenomena there is usually an observed increase in the 

local sediment transport capacity and, therefore, and an increased tendency to scour. 

Therefore, an understanding of the scour potential is important in the context of offshore 

wind farms since it may lead to some or all of the following: 

 

• Compromise of the structural stability of the turbines 

• Increased sediment transport (both suspended and bedload), including 

transfer of sediment between coastal areas 

• Development of freespans in cable route 
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Scour processes in the marine environment are more complex than those due to steady 

flow alone (e.g. rivers) due to the effect of waves and the combined effect of currents and 

waves.  Herbich (1981) and Herbich et al. (1984) presented results from some of the first 

detailed investigations on the impact of scour on marine structures. Much of their work 

was based on empirical type design rules since knowledge of many of the hydrodynamic 

processes was still poorly understood. More recently, Whitehouse (1998) presented a 

review of the developments in scour into the 1990’s, whilst Sumer and Fredsøe (2002) 

have provided a comprehensive account of scour at marine structures, incorporating 

state-of-the-art knowledge.  

The development of offshore wind farms, potentially, requires the investigation of 

two principal scour issues, that related to the presence of a pipeline/cable and that due to 

the presence of the turbine structures, whether that is a single pile structure, gravity base 

or hybrid design (e.g. tripod structure). A Review and assessment of the potential effects 

on coastal processes related to the development of offshore windfarms around the UK 

coast has recently been completed for the UK Government (Cooper and Beiboer, 2002). 

The following sections present a case study of an offshore wind farm from the west 

coast of the UK at Scarweather Sands in the Bristol Channel. A comparison is made 

between the empirical formulae available to undertake a first-order estimate of the scour 

potential due to the presence of a structure in the marine environment against field data. 

The scour is considered to be a function of the current alone, since wave activity on the 

day of the survey was minimal. 

2  Foundation scour – Theory 

2.1. Wave Diffraction 

It is commonly accepted that diffraction effects around a cylinder become important 

when the ratio D/L becomes greater than 0.2 (Isaacson, 1979); where D is the diameter of 

the pile and L is the wavelength. For the Scarweather offshore wind farm the diameter of 

the proposed met. mast monopile structure is 2.2m, therefore,  

                                         11mL                   2.0
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                                     (1) 

The slender-pile regime will exist if the pile diameter, D, is small relative to the 

wavelength, L, and it is this regime that is assumed to exist for the present case based on 

the results of the wave modelling.  

2.1. Scour around a slender pile in currents: 

In steady currents, an important element in the scour process is the horseshoe vortex. In 

conjunction with the contraction of the streamlines at the edges of the pile, this vortex 

can erode a significant amount of sediment away from the vicinity of the pile and result 

in the formation of a truncated cone-shaped scour hole.  

The flow pattern near a pile is quite complex and has been investigated by numerous 

researchers, for example, Breusers and Raudkivi (1991), Melville and Coleman (2000) 

and will not be described in any detail here. However, the principal features of scour 
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round a circular pile are well defined: the downflow at the upstream face of the pile; the 

horseshoe vortex at the base of the pile; a surface roller (or bow wave) at the upstream 

face of the pile; and wake vortices downstream of the pile (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow pattern around a cylindrical pile (after Herbich et al. 1984). 

 

Much literature is available for scour depth under steady flow. Breusers et al. (1977) 

presented a simple expression for scour depth under live-bed scour and this has been 

extended by Sumer et al. (1992) by assessing the statistics of the original data such that: 

                                          DS
e

D

S σ+= 3.1                                                                            (2) 

where DSσ  is the standard deviation of the scour depth, Se, to pile diameter ratio. Based 

on experimental data DSσ  is taken to be 0.7. 
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Numerous equations have been proposed for the estimation of the depth of local 

scour at structures (Melville and Coleman, 2000). Examples of other formulas in use for 

estimating scour depth under steady currents are those of Johnson (1992) and Richardson 

and Davis (2001). The Richardson and Davis formulation (Eqn 3) is used in the US 

Department of Transport, Federal Highway Administration (FHWA) Hydraulic 

Engineering Circular (HEC) No.18 for determining scour at bridges. 
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Where  D = the pile diameter (m);  h0 = flow depth (m);   K1 = correction factor for pile 

nose shape;  K2 = correction factor for angle of attack of flow;  K3 = correction factor for 

bed condition;  K4 = correction factor for size of bed material;  Fr = Froude number. 

 

2.1. Effect of Tidal Flow 

 

All the above equations are for steady flow. Relatively little work has been undertaken to 

investigate scour due to tidal flow in comparison to studies undertaken for unidirectional 

flow. Since the flow reverses direction with the tide consequently the scour development 

will take place in two directions. The local scour depth can be estimated using the same 

equations as for unidirectional river flow, although scour development is typically 

reduced due to sediment eroded during the first phase of the tide being deposited on the 

reversing part of the tidal cycle. In addition to the astronomical variation of the tide, 

other factors that may affect local scour in tidal areas are meteorological effects such as 

storm surges and the relative magnitudes of the fluvial and tidal flows. 

3. Scarweather OWF Case Study 

United Utilities Green Energy Ltd. (UUGEL) pre-qualified for a 25 year-lease of a 

10km2 area of the seabed from the Crown Estate for the development of an offshore wind 

farm. The allocated site is in the lee of a sandbank known as Scarweather Sands, located 

towards the south-east of Swansea Bay in the Bristol Channel (Figure 2). The 

development site also extends across parts of the adjacent Hugo Bank.  The Bristol 

channel is a macro tidal environment with some of the largest tidal ranges in the world. 

A meteorological mast was installed at the Scarweather Sands offshore wind farm 

site in May 2003. The mast consisted of a 2.2m diameter mono-pile without scour 

protection. The position of the Met. mast coincided with the 6m depth contour. 

Shortly after installation, monitoring was undertaken using multi-beam sonar to 

assess the bathymetry in the immediate vicinity of the mast. The survey area was 300m 

by 300m centred on the mast location. The survey was undertaken over a flood tide from 

around low water up to high water two days after the lowest neap tide in the particular 

spring-neap cycle (Figure 3). Tidal corrections for the survey depths were undertaken 

automatically with reference to Chart Datum at Port Talbot. 
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Figure 2. Location of Scarweather Offshore Wind Farm. 

Figure 3. Predicted water level at Port Talbot. 

4. Results and Discussion 

The results from the multi-beam survey show that scour effects are limited to the 

immediate area around the mast. However, it is also evident that the seabed around the 

met. mast responds to changes in the flow even over a half tidal cycle (Figure 4).  
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Around Low Water: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Around High Water: 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Surface plots showing evidence of scour around the met mast. Depths are in m relative to chart Datum 

(Port Talbot) 

 

Also evident in Figure 4 are the tidal effects on scour development. From the ‘low 

water’ plot, which corresponds to an incoming flood tide, the scour hole is elongated 

along the path of the tide with a steeper profile on the upstream side of the mast (≈ 29°). 
This is close to the angle of internal friction (30°). The downstream slope is much less 

steep (≈ 14°). The scour hole corresponding to around high water shows a more 

symmetrical profile with a slightly elongated scour hole in the direction of the ebbing 

tide. 

The average scour hole depths for the low water and high water measurement periods 

are 1.3m and 0.6m, respectively.  Ignoring the effects of waves the equilibrium scour 

depth predicted from Eqn (2) is 3.6m assuming a standard deviation of 0.7. However, if 

we wish to make an assessment of the scour depth through a tidal cycle then it is 

necessary to adopt a different approach. Using the formula of Richardson and Davis 

(2001) it is possible to generate a time-varying depth of scour. To put the scour hole 
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generation into some time frame the following empirical expressions have been applied 

(see Sumer and Fredsøe, 2002). 

 

                                                                                                                                  (4) 

            

                    
D
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                                                                                                                                                                                                                    (5) 

 

Where S is the scour depth with time, δ is the boundary layer thickness (assumed to be 

the flow depth for tidal flow) and θ is the Shields parameter. To put these normalized 

expressions for time-scale back into a real time frame Sumer and Fredsøe use the 

following expression. 
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Where d50  = median grain diameter; g  = acceleration due to gravity; s  = ratio of 

densities of grain and water. Figure 5 shows the predicted variation in scour depth with 

time. 

Figure 5. Predicted scour depth at the Meteorological Mast. 

 

The predicted depths correspond well with those determined from the field 

measurements, although the predicted scour depth around low water is somewhat larger 

than that observed in the field (between 0.69m and 0.83m). Such an approach ignores the 

effect of waves and any underlying movement of the seabed. However, wave action was 
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not significant during the period of the measurements. To obtain a better understanding 

of the behaviour of the seabed due to the combined influence of waves and tides around 

the mast, it would be useful to combine the area surveys with continual monitoring by 

‘instrumenting’ the structure. 

4. Conclusions 

It has been demonstrated that it is possible to use an existing scour formula for steady 

flow and apply it to a tidal environment and obtain good predictions of scour depth over 

a half-tidal cycle by taking into account the time-varying component of the scour. 

However, such an approach may not be universally valid or have limited application 

depending on the prevailing hydrodynamic conditions. To investigate the longer-term 

effects of scour, particularly under combined waves and current it is suggested that such 

area bathymetric surveys should be combined with continual measurements. 
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