24 research outputs found

    Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

    Get PDF
    In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification

    Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

    Get PDF
    We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude) coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate

    HAPPi Kneecaps! Protocol for a participant- and assessor-blinded, randomised, parallel group feasibility trial of foot orthoses for adolescents with patellofemoral pain

    Get PDF
    BACKGROUND: Patellofemoral pain (PFP) is a common cause of knee pain in adolescents, but there are limited evidence-based treatment options for this population. Foot orthoses can improve pain and function in adults with PFP, and may be effective for adolescents. The primary aim of th

    GPCR production in a novel yeast strain that makes cholesterol-like sterols

    No full text
    The activities of many mammalian membrane proteins including G-protein coupled receptors are cholesterol-dependent. Unlike higher eukaryotes, yeast do not make cholesterol. Rather they make a related molecule called ergosterol. As cholesterol and ergosterol are biologically non-equivalent, the potential of yeast as hosts for overproducing mammalian membrane proteins has never been fully realised. To address this problem, we are trying to engineer a novel strain of Saccharomyces cerevisiae in which the cholesterol biosynthetic pathway of mammalian cells has been fully reconstituted. Thus far, we have created a modified strain that makes cholesterol-like sterols which has an increased capacity to make G-protein coupled receptors compared to control yeast

    A Tale of Two Catchments: Causality Analysis and Isotope Systematics Reveal Mountainous Watershed Traits That Regulate the Retention and Release of Nitrogen

    No full text
    Mountainous watersheds are characterized by variability in functional traits, including vegetation, topography, geology, and geomorphology, which determine nitrogen (N) retention, and release. Coal Creek and East River are two contrasting catchments within the Upper Colorado River Basin that differ markedly in total nitrate (NO3−) export. The East River has a diverse vegetation cover, and sinuous floodplains, and is underlain by N-rich marine shale. At 0.21 ± 0.14 kg ha−1 yr−1, the East River exports ∼3.5 times more NO3− relative to the conifer-dominated Coal Creek (0.06 ± 0.02 kg ha−1 yr−1). While this can partly be explained by the larger size of the East River, the distinct watershed traits of these two catchments imply different mechanisms controlling the aggregate N-export signal. A causality analysis shows physical and biogenic processes were critical in determining NO3− export from the East River catchment. Stable isotope ratios of NO3− (δ15NNO3 and δ18ONO3) show the East River catchment is a strong hotspot for biogeochemical processing of NO3− at the hillslope soil-saprolite. By contrast, the conifer-dominated Coal Creek retained nearly all atmospherically deposited NO3−, and its export was controlled by catchment hydrological traits (i.e., snowmelt periods and water table depth). The conservative N-cycle within Coal Creek is likely due to the abundance of conifer trees, and smaller riparian regions, retaining more NO3− overall and reduced processing prior to export. This study highlights the value of integrating isotope systematics to link watershed functional traits to mechanisms of watershed element retention and release
    corecore