155 research outputs found

    La dynamique de l’inflation en France.

    Get PDF
    persistance de l’inflation, politique monétaire, test de rupture multiple, inflation sectorielle.

    Break in the Mean and Persistence of Inflation: a Sectoral Analysis of French CPI.

    Get PDF
    This paper uses disaggregated CPI time series to show that a break in the mean of French inflation occurred in the mid-eighties and that the 1983 monetary policy shift mostly accounted for it. CPI average yearly growth declined from nearly 11% before the break date (May 1985) to 2.1% after. No other break in the 1973-2004 sample period can be found. Controlling for this mean break, both aggregate and sectoral inflation persistence are stable and low, with the unit root lying far in the tail of the persistence estimates. However, persistence differs dramatically across sectors. Finally, the duration between two price changes (at the firm level) appears positively related with inflation persistence (at the aggregate level).Multiple breaks test ; Inflation persistence ; Monetary policy, sectoral prices

    Topological Properties of Citation and Metabolic Networks

    Full text link
    Topological properties of "scale-free" networks are investigated by determining their spectral dimensions dSd_S, which reflect a diffusion process in the corresponding graphs. Data bases for citation networks and metabolic networks together with simulation results from the growing network model \cite{barab} are probed. For completeness and comparisons lattice, random, small-world models are also investigated. We find that dSd_S is around 3 for citation and metabolic networks, which is significantly different from the growing network model, for which dSd_S is approximately 7.5. This signals a substantial difference in network topology despite the observed similarities in vertex order distributions. In addition, the diffusion analysis indicates that whereas the citation networks are tree-like in structure, the metabolic networks contain many loops.Comment: 11 pages, 3 figure

    MEVA - An interactive visualization application for validation of multifaceted meteorological data with multiple 3D devices

    No full text
    To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks

    Spectrum of the Dirac operator coupled to two-dimensional quantum gravity

    Get PDF
    We implement fermions on dynamical random triangulation and determine numerically the spectrum of the Dirac-Wilson operator D for the system of Majorana fermions coupled to two-dimensional Euclidean quantum gravity. We study the dependence of the spectrum of the operator (epsilon D) on the hopping parameter. We find that the distributions of the lowest eigenvalues become discrete when the hopping parameter approaches the value 1/sqrt{3}. We show that this phenomenon is related to the behavior of the system in the 'antiferromagnetic' phase of the corresponding Ising model. Using finite size analysis we determine critical exponents controlling the scaling of the lowest eigenvalue of the spectrum including the Hausdorff dimension d_H and the exponent kappa which tells us how fast the pseudo-critical value of the hopping parameter approaches its infinite volume limit.Comment: 26 pages, Latex + 23 eps figs, extended analysis of the spectrum, added figure

    Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results

    Full text link
    We review some recent attempts to extract information about the nature of quantum gravity, with and without matter, by quantum field theoretical methods. More specifically, we work within a covariant lattice approach where the individual space-time geometries are constructed from fundamental simplicial building blocks, and the path integral over geometries is approximated by summing over a class of piece-wise linear geometries. This method of ``dynamical triangulations'' is very powerful in 2d, where the regularized theory can be solved explicitly, and gives us more insights into the quantum nature of 2d space-time than continuum methods are presently able to provide. It also allows us to establish an explicit relation between the Lorentzian- and Euclidean-signature quantum theories. Analogous regularized gravitational models can be set up in higher dimensions. Some analytic tools exist to study their state sums, but, unlike in 2d, no complete analytic solutions have yet been constructed. However, a great advantage of our approach is the fact that it is well-suited for numerical simulations. In the second part of this review we describe the relevant Monte Carlo techniques, as well as some of the physical results that have been obtained from the simulations of Euclidean gravity. We also explain why the Lorentzian version of dynamical triangulations is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde

    Growing Scale-Free Networks with Tunable Clustering

    Full text link
    We extend the standard scale-free network model to include a ``triad formation step''. We analyze the geometric properties of networks generated by this algorithm both analytically and by numerical calculations, and find that our model possesses the same characteristics as the standard scale-free networks like the power-law degree distribution and the small average geodesic length, but with the high-clustering at the same time. In our model, the clustering coefficient is also shown to be tunable simply by changing a control parameter - the average number of triad formation trials per time step.Comment: Accepted for publication in Phys. Rev.

    cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma

    Get PDF
    BACKGROUND: Recurrent non-random genomic alterations are the hallmarks of cancer and the characterization of these imbalances is critical to our understanding of tumorigenesis and cancer progression. RESULTS: We performed array-comparative genomic hybridization (A-CGH) on cDNA microarrays containing 42,000 elements in neuroblastoma (NB). We found that only two chromosomes (2p and 12q) had gene amplifications and all were in the MYCN amplified samples. There were 6 independent non-contiguous amplicons (10.4–69.4 Mb) on chromosome 2, and the largest contiguous region was 1.7 Mb bounded by NAG and an EST (clone: 757451); the smallest region was 27 Kb including an EST (clone: 241343), NCYM, and MYCN. Using a probabilistic approach to identify single copy number changes, we systemically investigated the genomic alterations occurring in Stage 1 and Stage 4 NBs with and without MYCN amplification (stage 1-, 4-, and 4+). We have not found genomic alterations universally present in all (100%) three subgroups of NBs. However we identified both common and unique patterns of genomic imbalance in NB including gain of 7q32, 17q21, 17q23-24 and loss of 3p21 were common to all three categories. Finally we confirm that the most frequent specific changes in Stage 4+ tumors were the loss of 1p36 with gain of 2p24-25 and they had fewer genomic alterations compared to either stage 1 or 4-, indicating that for this subgroup of poor risk NB requires a smaller number of genomic changes are required to develop the malignant phenotype. CONCLUSIONS: cDNA A-CGH analysis is an efficient method for the detection and characterization of amplicons. Furthermore we were able to detect single copy number changes using our probabilistic approach and identified genomic alterations specific to stage and MYCN amplification

    Making a Universe

    Get PDF
    For understanding the origin of anisotropies in the cosmic microwave background, rules to construct a quantized universe is proposed based on the dynamical triangulation method of the simplicial quantum gravity. A dd-dimensional universe having the topology Dd D^d is created numerically in terms of a simplicial manifold with dd-simplices as the building blocks. The space coordinates of a universe are identified on the boundary surface Sd1 S^{d-1} , and the time coordinate is defined along the direction perpendicular to Sd1 S^{d-1} . Numerical simulations are made mainly for 2-dimensional universes, and analyzed to examine appropriateness of the construction rules by comparing to analytic results of the matrix model and the Liouville theory. Furthermore, a simulation in 4-dimension is made, and the result suggests an ability to analyze the observations on anisotropies by comparing to the scalar curvature correlation of a S2 S^2 -surface formed as the last scattering surface in the S3 S^3 universe.Comment: 27pages,18figures,using jpsj.st
    corecore