17 research outputs found

    Dimer-dimer stacking interactions are important for nucleic acid binding by the archaeal chromatin protein Alba

    Get PDF
    Archaea use a variety of small basic proteins to package their DNA. One of the most widespread and highly conserved is the Alba (Sso10b) protein. Alba interacts with both DNA and RNA in vitro, and we show in the present study that it binds more tightly to dsDNA (double-stranded DNA) than to either ssDNA (single-stranded DNA) or RNA. The Alba protein is dimeric in solution, and forms distinct ordered complexes with DNA that have been visualized by electron microscopy studies; these studies suggest that, on binding dsDNA, the protein forms extended helical protein fibres. An end-to-end association of consecutive Alba dimers is suggested by the presence of a dimer-dimer interface in crystal structures of Alba from several species, and by the strong conservation of the interface residues, centred on Are and Phe(60). In the present study we map perturbation of the polypeptide backbone of Alba upon binding to DNA and RNA by NMR, and demonstrate the central role of Phe(60) in forming the dimer dimer interface. Site-directed spin labelling and pulsed ESR are used to confirm that an end-to-end, dimer dimer interaction forms in the presence of dsDNA.Publisher PDFPeer reviewe

    Mechanism of DNA loading by the DNA repair helicase XPD

    Get PDF
    Funding: Welcome Trust Programme Grant [WT091825MA to M.F.W., J.H.N.]; Wellcome Trust [099149/Z/12/Z]; Royal Society Wolfson Merit Award (to M.F.W., J.H.N.). Funding for open access charge: Wellcome Trust [WT091825MA].The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD.Publisher PDFPeer reviewe

    Staphylococcus aureus DinG, a helicase that has evolved into a nuclease

    Get PDF
    DinG (damage inducible gene G) is a bacterial superfamily 2 helicase with 5′→3′ polarity. DinG is related to the XPD (xeroderma pigmentosum complementation group D) helicase family, and they have in common an FeS (iron–sulfur)-binding domain that is essential for the helicase activity. In the bacilli and clostridia, the DinG helicase has become fused with an N-terminal domain that is predicted to be an exonuclease. In the present paper we show that the DinG protein from Staphylococcus aureus lacks an FeS domain and is not a DNA helicase, although it retains DNA-dependent ATP hydrolysis activity. Instead, the enzyme is an active 3′→5′ exonuclease acting on single-stranded DNA and RNA substrates. The nuclease activity can be modulated by mutation of the ATP-binding cleft of the helicase domain, and is inhibited by ATP or ADP, suggesting a modified role for the inactive helicase domain in the control of the nuclease activity. By degrading rather than displacing RNA or DNA strands, the S. aureus DinG nuclease may accomplish the same function as the canonical DinG helicase

    Taking a molecular motor for a spin : helicase mechanism studied by spin labelling and PELDOR

    Get PDF
    Welcome Trust programme grant [WT091825MA to M.F.W., J.H.N.]; Wellcome Trust multi-user equipment grant [099149/Z/12/Z]. Royal Society Wolfseon Merit Award (to M.F.W., J.H.N.). Funding for open access charge: Wellcome Trust [WT091825MA].The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.Publisher PDFPeer reviewe

    Facile and scalable expression and purification of transcription factor IIH (TFIIH) core complex

    No full text
    Transcription factor IIH (TFIIH) plays essential roles in both the initiation of RNA Polymerase II-mediated transcription and the Nucleotide Excision Repair (NER) pathway in eukaryotes. In NER, the 7-subunit TFIIH Core sub-complex is responsible for the opening and extension of the DNA bubble created at the lesion site, utilizing the molecular motors XPB and XPD. Mutations in Core subunits are associated with a series of severe autosomal recessive disorders characterised by symptoms such as mild-to-extreme photosensitivity, premature ageing, physical and neurological anomalies, and in some cases an increased susceptibility to cancer. Although TFIIH Core has been successfully obtained in the past, the process has always remained challenging and laborious, involving many steps that severely hindered the amount of pure, active complex obtained. This has limited biochemical and functional studies of the NER process. Here we describe improved and simplified processes for the cloning, expression and purification of the 7-subunit TFIIH Core sub-complex. The combined use of auto-cleavable 2A-like sequences derived from the Foot-and-Mouth Disease Virus (FMDV) and the MultiBac™ cloning system, a powerful baculoviral expression vector specifically conceived for the obtaining of multi-subunit eukaryotic complexes, allowed us to obtain a single, 7-gene plasmid in a short time using regular restriction cloning strategies. Additionally, expression of the construct in High Five™ insect cells paired with a simple 5-step purification protocol allowed the extraction of a pure, active TFIIH Core sub-complex in milligram quantities

    Facile and scalable expression and purification of transcription factor IIH (TFIIH) core complex

    Get PDF
    This work was supported by the BBSRC [grant number BB/J01446X/1] and [grant number BB/R015570/1]Transcription factor IIH (TFIIH) plays essential roles in both the initiation of RNA Polymerase II-mediated transcription and the Nucleotide Excision Repair (NER) pathway in eukaryotes. In NER, the 7-subunit TFIIH Core sub-complex is responsible for the opening and extension of the DNA bubble created at the lesion site, utilizing the molecular motors XPB and XPD. Mutations in Core subunits are associated with a series of severe autosomal recessive disorders characterised by symptoms such as mild-to-extreme photosensitivity, premature ageing, physical and neurological anomalies, and in some cases an increased susceptibility to cancer. Although TFIIH Core has been successfully obtained in the past, the process has always remained challenging and laborious, involving many steps that severely hindered the amount of pure, active complex obtained. This has limited biochemical and functional studies of the NER process. Here we describe improved and simplified processes for the cloning, expression and purification of the 7-subunit TFIIH Core sub-complex. The combined use of auto-cleavable 2A-like sequences derived from the Foot-and-Mouth Disease Virus (FMDV) and the MultiBac™ cloning system, a powerful baculoviral expression vector specifically conceived for the obtaining of multi-subunit eukaryotic complexes, allowed us to obtain a single, 7-gene plasmid in a short time using regular restriction cloning strategies. Additionally, expression of the construct in High Five™ insect cells paired with a simple 5-step purification protocol allowed the extraction of a pure, active TFIIH Core sub-complex in milligram quantities.PostprintPeer reviewe

    Dimer-dimer stacking interactions are important for nucleic acid binding by the archaeal chromatin protein Alba

    No full text
    Archaea use a variety of small basic proteins to package their DNA. One of the most widespread and highly conserved is the Alba (Sso10b) protein. Alba interacts with both DNA and RNA in vitro, and we show in the present study that it binds more tightly to dsDNA (double-stranded DNA) than to either ssDNA (single-stranded DNA) or RNA. The Alba protein is dimeric in solution, and forms distinct ordered complexes with DNA that have been visualized by electron microscopy studies; these studies suggest that, on binding dsDNA, the protein forms extended helical protein fibres. An end-to-end association of consecutive Alba dimers is suggested by the presence of a dimer-dimer interface in crystal structures of Alba from several species, and by the strong conservation of the interface residues, centred on Are and Phe(60). In the present study we map perturbation of the polypeptide backbone of Alba upon binding to DNA and RNA by NMR, and demonstrate the central role of Phe(60) in forming the dimer dimer interface. Site-directed spin labelling and pulsed ESR are used to confirm that an end-to-end, dimer dimer interaction forms in the presence of dsDNA.</p

    Dimer-dimer stacking interactions are important for nucleic acid binding by the archaeal chromatin protein Alba

    Get PDF
    Archaea use a variety of small basic proteins to package their DNA. One of the most widespread and highly conserved is the Alba (Sso10b) protein. Alba interacts with both DNA and RNA in vitro, and we show in the present study that it binds more tightly to dsDNA (double-stranded DNA) than to either ssDNA (single-stranded DNA) or RNA. The Alba protein is dimeric in solution, and forms distinct ordered complexes with DNA that have been visualized by electron microscopy studies; these studies suggest that, on binding dsDNA, the protein forms extended helical protein fibres. An end-to-end association of consecutive Alba dimers is suggested by the presence of a dimer–dimer interface in crystal structures of Alba from several species, and by the strong conservation of the interface residues, centred on Arg(59) and Phe(60). In the present study we map perturbation of the polypeptide backbone of Alba upon binding to DNA and RNA by NMR, and demonstrate the central role of Phe(60) in forming the dimer–dimer interface. Site-directed spin labelling and pulsed ESR are used to confirm that an end-to-end, dimer–dimer interaction forms in the presence of dsDNA
    corecore