4 research outputs found

    Replacement of the Trabecular Meshwork Cells—A Way Ahead in IOP Control?

    Get PDF
    Glaucoma is one of the leading causes of vision loss worldwide, characterised with irreversible optic nerve damage and progressive vision loss. Primary open-angle glaucoma (POAG) is a subset of glaucoma, characterised by normal anterior chamber angle and raised intraocular pressure (IOP). Reducing IOP is the main modifiable factor in the treatment of POAG, and the trabecular meshwork (TM) is the primary site of aqueous humour outflow (AH) and the resistance to outflow. The structure and the composition of the TM are key to its function in regulating AH outflow. Dysfunction and loss of the TM cells found in the natural ageing process and more so in POAG can cause abnormal extracellular matrix (ECM) accumulation, increased TM stiffness, and increased IOP. Therefore, repair or regeneration of TM’s structure and function is considered as a potential treatment for POAG. Cell transplantation is an attractive option to repopulate the TM cells in POAG, but to develop a cell replacement approach, various challenges are still to be addressed. The choice of cell replacement covers autologous or allogenic approaches, which led to investigations into TM progenitor cells, induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) as potential stem cell source candidates. However, the potential plasticity and the lack of definitive cell markers for the progenitor and the TM cell population compound the biological challenge. Morphological and differential gene expression of TM cells located within different regions of the TM may give rise to different cell replacement or regenerative approaches. As such, this review describes the different approaches taken to date investigating different cell sources and their differing cell isolation and differentiation methodologies. In addition, we highlighted how these approaches were evaluated in different animal and ex vivo model systems and the potential of these methods in future POAG treatment

    Presentation, management, and outcomes of older compared to younger adults with hospital-acquired bloodstream infections in the intensive care unit: a multicenter cohort study

    No full text
    Purpose: Older adults admitted to the intensive care unit (ICU) usually have fair baseline functional capacity, yet their age and frailty may compromise their management. We compared the characteristics and management of older (≥ 75 years) versus younger adults hospitalized in ICU with hospital-acquired bloodstream infection (HA-BSI). Methods: Nested cohort study within the EUROBACT-2 database, a multinational prospective cohort study including adults (≥ 18 years) hospitalized in the ICU during 2019-2021. We compared older versus younger adults in terms of infection characteristics (clinical signs and symptoms, source, and microbiological data), management (imaging, source control, antimicrobial therapy), and outcomes (28-day mortality and hospital discharge). Results: Among 2111 individuals hospitalized in 219 ICUs with HA-BSI, 563 (27%) were ≥ 75 years old. Compared to younger patients, these individuals had higher comorbidity score and lower functional capacity; presented more often with a pulmonary, urinary, or unknown HA-BSI source; and had lower heart rate, blood pressure and temperature at presentation. Pathogens and resistance rates were similar in both groups. Differences in management included mainly lower rates of effective source control achievement among aged individuals. Older adults also had significantly higher day-28 mortality (50% versus 34%, p < 0.001), and lower rates of discharge from hospital (12% versus 20%, p < 0.001) by this time. Conclusions: Older adults with HA-BSI hospitalized in ICU have different baseline characteristics and source of infection compared to younger patients. Management of older adults differs mainly by lower probability to achieve source control. This should be targeted to improve outcomes among older ICU patients

    The role of centre and country factors on process and outcome indicators in critically ill patients with hospital-acquired bloodstream infections

    No full text
    Purpose: The primary objective of this study was to evaluate the associations between centre/country-based factors and two important process and outcome indicators in patients with hospital-acquired bloodstream infections (HABSI). Methods: We used data on HABSI from the prospective EUROBACT-2 study to evaluate the associations between centre/country factors on a process or an outcome indicator: adequacy of antimicrobial therapy within the first 24 h or 28-day mortality, respectively. Mixed logistical models with clustering by centre identified factors associated with both indicators. Results: Two thousand two hundred nine patients from two hundred one intensive care units (ICUs) were included in forty-seven countries. Overall, 51% (n = 1128) of patients received an adequate antimicrobial therapy and the 28-day mortality was 38% (n = 839). The availability of therapeutic drug monitoring (TDM) for aminoglycosides everyday [odds ratio (OR) 1.48, 95% confidence interval (CI) 1.03-2.14] or within a few hours (OR 1.79, 95% CI 1.34-2.38), surveillance cultures for multidrug-resistant organism carriage performed weekly (OR 1.45, 95% CI 1.09-1.93), and increasing Human Development Index (HDI) values were associated with adequate antimicrobial therapy. The presence of intermediate care beds (OR 0.63, 95% CI 0.47-0.84), TDM for aminoglycoside available everyday (OR 0.66, 95% CI 0.44-1.00) or within a few hours (OR 0.51, 95% CI 0.37-0.70), 24/7 consultation of clinical pharmacists (OR 0.67, 95% CI 0.47-0.95), percentage of vancomycin-resistant enterococci (VRE) between 10% and 25% in the ICU (OR 1.67, 95% CI 1.00-2.80), and decreasing HDI values were associated with 28-day mortality. Conclusion: Centre/country factors should be targeted for future interventions to improve management strategies and outcome of HABSI in ICU patients

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore