314 research outputs found
Model Studies of the Solubility of Inorganic Mercury in the Polluted Coastal Marine Environment
In order to determine the possible solubility of inorganic
mercury in the polluted coastal marine environment, both experimental
and model studies have been performed. Dissolution of
HgS(s) in bicarbonate solutions of various concentrations and pH
values showed increasing solubility of mercury with the pH and
[C032-] increase. Approximately constant value of 40 ÎĽg dm-3 was
obtained when HgS(s) was dissolved in various dilutions of sea
water with NaHC03 of 10-3 mol dm-3• The model calculation shows
that mercury in the presence of oxygen can be released from the
sediments as elemental mercury, Hg0 (aq), wich is in equilibrium
with volatile Hg0 (g). The rate at which oxidation proceeds is still
unknown. Recent studies show that the solubility of inorganic and
organic salts of mercury (II) are much higher than solubility of
elemental mercury.
From the experimental results and from the model calculation,
one can predict continuous leaching of soluble mercury from
polluted sediments long after polluting industries will be closed
all over the world
SN2013fs and SN2013fr: Exploring the circumstellar-material diversity in Type II supernovae
We present photometry and spectroscopy of SN2013fs and SN2013fr in the first
100 days post-explosion. Both objects showed transient, relatively narrow
H emission lines characteristic of SNeIIn, but later resembled normal
SNeII-P or SNeII-L, indicative of fleeting interaction with circumstellar
material (CSM). SN2013fs was discovered within 8hr of explosion. Its light
curve exhibits a plateau, with spectra revealing strong CSM interaction at
early times. It is a less luminous version of the transitional SNIIn PTF11iqb,
further demonstrating a continuum of CSM interaction intensity between SNeII-P
and IIn. It requires dense CSM within 6.510~cm of the
progenitor, from a phase of advanced pre-SN mass loss shortly before explosion.
Spectropolarimetry of SN2013fs shows little continuum polarization, but
noticeable line polarization during the plateau phase. SN2013fr morphed from a
SNIIn at early times to a SNII-L. After the first epoch its narrow lines
probably arose from host-galaxy emission, but the bright, narrow H
emission at early times may be intrinsic. As for SN2013fs, this would point to
a short-lived phase of strong CSM interaction if proven to be intrinsic,
suggesting a continuum between SNeIIn and II-L. It is a low-velocity SNII-L,
like SN2009kr but more luminous. SN2013fr also developed an IR excess at later
times, due to warm CSM dust that require a more sustained phase of strong
pre-SN mass loss.Comment: MNRAS accepted. 28 pages, 23 figures, 8 table
Recommended from our members
Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize.
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize Ă— teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it
Multi-Epoch Spectropolarimetry for a Sample of Type IIn Supernovae: Persistent Asymmetry in Dusty Circumstellar Material
We present multi-epoch spectropolarimetry and spectra for a sample of 14 Type
IIn supernovae (SNe IIn). We find that after correcting for likely interstellar
polarization, SNe IIn commonly show intrinsic continuum polarization of 1--3%
at the time of peak optical luminosity, although a few show weaker or
negligible polarization. While some SNe IIn have even stronger polarization at
early times, their polarization tends to drop smoothly over several hundred
days after peak. We find a tendency for the intrinsic polarization to be
stronger at bluer wavelengths, especially at early times. While polarization
from an electron scattering region is expected to be grey, scattering of SN
light by dusty circumstellar material (CSM) may induce such a
wavelength-dependent polarization. For most SNe IIn, changes in polarization
degree and wavelength dependence are not accompanied by changes in the position
angle, requiring that asymmetric pre-SN mass loss had a persistent geometry.
While 2--3% polarization is typical, about 30% of SNe IIn have very low or
undetected polarization. Under the simplifying assumption that all SN IIn
progenitors have axisymmetric CSM (i.e. disk/torus/bipolar), then the
distribution of polarization values we observe is consistent with similarly
asymmetric CSM seen from a distribution of random viewing angles. This
asymmetry has very important implications for understanding the origin of
pre-SN mass loss in SNe IIn, suggesting that it was shaped by binary
interaction.Comment: 76 pages, 54 figures (13 in main text, 41 in appendix A
Parallel altitudinal clines reveal trends in adaptive evolution of genome size in \u3ci\u3eZea mays\u3c/i\u3e
While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes
Protein interactions in Xenopus germ plasm RNP particles
Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles
Volumes of polytopes in spaces of constant curvature
We overview the volume calculations for polyhedra in Euclidean, spherical and
hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary
tetrahedron in and . We also present some results, which provide a
solution for Seidel problem on the volume of non-Euclidean tetrahedron.
Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle,
horocycle or one branch of equidistant curve. This is a natural hyperbolic
analog of the cyclic quadrilateral in the Euclidean plane. We find a few
versions of the Brahmagupta formula for the area of such quadrilateral. We also
present a formula for the area of a hyperbolic trapezoid.Comment: 22 pages, 9 figures, 58 reference
Circumstellar interaction in supernovae in dense environments - an observational perspective
In a supernova explosion, the ejecta interacting with the surrounding
circumstellar medium (CSM) give rise to variety of radiation. Since CSM is
created from the mass lost from the progenitor star, it carries footprints of
the late time evolution of the star. This is one of the unique ways to get a
handle on the nature of the progenitor star system. Here, I will focus mainly
on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe.
Radio and X-ray emission from this class of SNe have revealed important
modifications in their radiation properties, due to the presence of high
density CSM. Forward shock dominance of the X-ray emission, internal free-free
absorption of the radio emission, episodic or non-steady mass loss rate,
asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in
Space Science Reviews. Chapter in International Space Science Institute
(ISSI) Book on "Supernovae" to be published in Space Science Reviews by
Springe
Pattern Spectra from Different Component Trees for Estimating Soil Size Distribution
We study the pattern spectra in context of soil structure analysis. Good soil structure is vital for sustainable crop growth. Accurate and fast measuring methods can contribute greatly to soil management decisions. However, the current in-field approaches contain a degree of subjectivity, while obtaining quantifiable results through laboratory techniques typically involves sieving the soil which is labour- and time-intensive. We aim to replace this physical sieving process through image analysis, and investigate the effectiveness of pattern spectra to capture the size distribution of the soil aggregates. We calculate the pattern spectra from partitioning hierarchies in addition to the traditional max-tree. The study is posed as an image retrieval problem, and confirms the ability of pattern spectra and suitability of different partitioning trees to re-identify soil samples in different arrangements and scales
- …