80 research outputs found
Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion
We consider the space-time evolution of initial discontinuities of depth and
flow velocity for an integrable version of the shallow water Boussinesq system
introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq
model" for which a flat water surface is modulationally stable, we speak below
of "positive dispersion" model. This model also appears as an approximation to
the equations governing the dynamics of polarisation waves in two-component
Bose-Einstein condensates. We describe its periodic solutions and the
corresponding Whitham modulation equations. The self-similar, one-phase wave
structures are composed of different building blocks which are studied in
detail. This makes it possible to establish a classification of all the
possible wave configurations evolving from initial discontinuities. The
analytic results are confirmed by numerical simulations
Integrable nonlinear equations on a circle
The concept of integrable boundary value problems for soliton equations on
and is extended to bounded regions enclosed by
smooth curves. Classes of integrable boundary conditions on a circle for the
Toda lattice and its reductions are found.Comment: 23 page
The Zakharov-Shabat spectral problem on the semi-line: Hilbert formulation and applications
The inverse spectral transform for the Zakharov-Shabat equation on the
semi-line is reconsidered as a Hilbert problem. The boundary data induce an
essential singularity at large k to one of the basic solutions. Then solving
the inverse problem means solving a Hilbert problem with particular prescribed
behavior. It is demonstrated that the direct and inverse problems are solved in
a consistent way as soon as the spectral transform vanishes with 1/k at
infinity in the whole upper half plane (where it may possess single poles) and
is continuous and bounded on the real k-axis. The method is applied to
stimulated Raman scattering and sine-Gordon (light cone) for which it is
demonstrated that time evolution conserves the properties of the spectral
transform.Comment: LaTex file, 1 figure, submitted to J. Phys.
Integrable boundary conditions for classical sine-Gordon theory
The possible boundary conditions consistent with the integrability of the
classical sine-Gordon equation are studied. A boundary value problem on the
half-line with local boundary condition at the origin is considered.
The most general form of this boundary condition is found such that the problem
be integrable. For the resulting system an infinite number of involutive
integrals of motion exist. These integrals are calculated and one is identified
as the Hamiltonian. The results found agree with some recent work of Ghoshal
and Zamolodchikov.Comment: 10 pages, DTP/94-3
Formation of soliton trains in Bose-Einstein condensates as a nonlinear Fresnel diffraction of matter waves
The problem of generation of atomic soliton trains in elongated Bose-Einstein
condensates is considered in framework of Whitham theory of modulations of
nonlinear waves. Complete analytical solution is presented for the case when
the initial density distribution has sharp enough boundaries. In this case the
process of soliton train formation can be viewed as a nonlinear Fresnel
diffraction of matter waves. Theoretical predictions are compared with results
of numerical simulations of one- and three-dimensional Gross-Pitaevskii
equation and with experimental data on formation of Bose-Einstein bright
solitons in cigar-shaped traps.Comment: 8 pages, 3 figure
Leading Order Temporal Asymptotics of the Modified Non-Linear Schrodinger Equation: Solitonless Sector
Using the matrix Riemann-Hilbert factorisation approach for non-linear
evolution equations (NLEEs) integrable in the sense of the inverse scattering
method, we obtain, in the solitonless sector, the leading-order asymptotics as
tends to plus and minus infinity of the solution to the Cauchy
initial-value problem for the modified non-linear Schrodinger equation: also
obtained are analogous results for two gauge-equivalent NLEEs; in particular,
the derivative non-linear Schrodinger equation.Comment: 29 pages, 5 figures, LaTeX, revised version of the original
submission, to be published in Inverse Problem
The Unified Method: I Non-Linearizable Problems on the Half-Line
Boundary value problems for integrable nonlinear evolution PDEs formulated on
the half-line can be analyzed by the unified method introduced by one of the
authors and used extensively in the literature. The implementation of this
general method to this particular class of problems yields the solution in
terms of the unique solution of a matrix Riemann-Hilbert problem formulated in
the complex -plane (the Fourier plane), which has a jump matrix with
explicit -dependence involving four scalar functions of , called
spectral functions. Two of these functions depend on the initial data, whereas
the other two depend on all boundary values. The most difficult step of the new
method is the characterization of the latter two spectral functions in terms of
the given initial and boundary data, i.e. the elimination of the unknown
boundary values. For certain boundary conditions, called linearizable, this can
be achieved simply using algebraic manipulations. Here, we present an effective
characterization of the spectral functions in terms of the given initial and
boundary data for the general case of non-linearizable boundary conditions.
This characterization is based on the analysis of the so-called global
relation, on the analysis of the equations obtained from the global relation
via certain transformations leaving the dispersion relation of the associated
linearized PDE invariant, and on the computation of the large asymptotics
of the eigenfunctions defining the relevant spectral functions.Comment: 39 page
On the Cauchy Problem for the Korteweg-de Vries Equation with Steplike Finite-Gap Initial Data I. Schwartz-Type Perturbations
We solve the Cauchy problem for the Korteweg-de Vries equation with initial
conditions which are steplike Schwartz-type perturbations of finite-gap
potentials under the assumption that the respective spectral bands either
coincide or are disjoint.Comment: 29 page
Initial-boundary value problems for discrete evolution equations: discrete linear Schrodinger and integrable discrete nonlinear Schrodinger equations
We present a method to solve initial-boundary value problems for linear and
integrable nonlinear differential-difference evolution equations. The method is
the discrete version of the one developed by A. S. Fokas to solve
initial-boundary value problems for linear and integrable nonlinear partial
differential equations via an extension of the inverse scattering transform.
The method takes advantage of the Lax pair formulation for both linear and
nonlinear equations, and is based on the simultaneous spectral analysis of both
parts of the Lax pair. A key role is also played by the global algebraic
relation that couples all known and unknown boundary values. Even though
additional technical complications arise in discrete problems compared to
continuum ones, we show that a similar approach can also solve initial-boundary
value problems for linear and integrable nonlinear differential-difference
equations. We demonstrate the method by solving initial-boundary value problems
for the discrete analogue of both the linear and the nonlinear Schrodinger
equations, comparing the solution to those of the corresponding continuum
problems. In the linear case we also explicitly discuss Robin-type boundary
conditions not solvable by Fourier series. In the nonlinear case we also
identify the linearizable boundary conditions, we discuss the elimination of
the unknown boundary datum, we obtain explicitly the linear and continuum limit
of the solution, and we write down the soliton solutions.Comment: 41 pages, 3 figures, to appear in Inverse Problem
- …