80 research outputs found

    Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion

    Get PDF
    We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations

    Integrable nonlinear equations on a circle

    Full text link
    The concept of integrable boundary value problems for soliton equations on R\mathbb{R} and R+\mathbb{R}_+ is extended to bounded regions enclosed by smooth curves. Classes of integrable boundary conditions on a circle for the Toda lattice and its reductions are found.Comment: 23 page

    The Zakharov-Shabat spectral problem on the semi-line: Hilbert formulation and applications

    Full text link
    The inverse spectral transform for the Zakharov-Shabat equation on the semi-line is reconsidered as a Hilbert problem. The boundary data induce an essential singularity at large k to one of the basic solutions. Then solving the inverse problem means solving a Hilbert problem with particular prescribed behavior. It is demonstrated that the direct and inverse problems are solved in a consistent way as soon as the spectral transform vanishes with 1/k at infinity in the whole upper half plane (where it may possess single poles) and is continuous and bounded on the real k-axis. The method is applied to stimulated Raman scattering and sine-Gordon (light cone) for which it is demonstrated that time evolution conserves the properties of the spectral transform.Comment: LaTex file, 1 figure, submitted to J. Phys.

    Integrable boundary conditions for classical sine-Gordon theory

    Full text link
    The possible boundary conditions consistent with the integrability of the classical sine-Gordon equation are studied. A boundary value problem on the half-line x0x\leq 0 with local boundary condition at the origin is considered. The most general form of this boundary condition is found such that the problem be integrable. For the resulting system an infinite number of involutive integrals of motion exist. These integrals are calculated and one is identified as the Hamiltonian. The results found agree with some recent work of Ghoshal and Zamolodchikov.Comment: 10 pages, DTP/94-3

    Formation of soliton trains in Bose-Einstein condensates as a nonlinear Fresnel diffraction of matter waves

    Full text link
    The problem of generation of atomic soliton trains in elongated Bose-Einstein condensates is considered in framework of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when the initial density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a nonlinear Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of one- and three-dimensional Gross-Pitaevskii equation and with experimental data on formation of Bose-Einstein bright solitons in cigar-shaped traps.Comment: 8 pages, 3 figure

    Leading Order Temporal Asymptotics of the Modified Non-Linear Schrodinger Equation: Solitonless Sector

    Full text link
    Using the matrix Riemann-Hilbert factorisation approach for non-linear evolution equations (NLEEs) integrable in the sense of the inverse scattering method, we obtain, in the solitonless sector, the leading-order asymptotics as tt tends to plus and minus infinity of the solution to the Cauchy initial-value problem for the modified non-linear Schrodinger equation: also obtained are analogous results for two gauge-equivalent NLEEs; in particular, the derivative non-linear Schrodinger equation.Comment: 29 pages, 5 figures, LaTeX, revised version of the original submission, to be published in Inverse Problem

    The Unified Method: I Non-Linearizable Problems on the Half-Line

    Full text link
    Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex kk-plane (the Fourier plane), which has a jump matrix with explicit (x,t)(x,t)-dependence involving four scalar functions of kk, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large kk asymptotics of the eigenfunctions defining the relevant spectral functions.Comment: 39 page

    Initial-boundary value problems for discrete evolution equations: discrete linear Schrodinger and integrable discrete nonlinear Schrodinger equations

    Full text link
    We present a method to solve initial-boundary value problems for linear and integrable nonlinear differential-difference evolution equations. The method is the discrete version of the one developed by A. S. Fokas to solve initial-boundary value problems for linear and integrable nonlinear partial differential equations via an extension of the inverse scattering transform. The method takes advantage of the Lax pair formulation for both linear and nonlinear equations, and is based on the simultaneous spectral analysis of both parts of the Lax pair. A key role is also played by the global algebraic relation that couples all known and unknown boundary values. Even though additional technical complications arise in discrete problems compared to continuum ones, we show that a similar approach can also solve initial-boundary value problems for linear and integrable nonlinear differential-difference equations. We demonstrate the method by solving initial-boundary value problems for the discrete analogue of both the linear and the nonlinear Schrodinger equations, comparing the solution to those of the corresponding continuum problems. In the linear case we also explicitly discuss Robin-type boundary conditions not solvable by Fourier series. In the nonlinear case we also identify the linearizable boundary conditions, we discuss the elimination of the unknown boundary datum, we obtain explicitly the linear and continuum limit of the solution, and we write down the soliton solutions.Comment: 41 pages, 3 figures, to appear in Inverse Problem
    corecore