12 research outputs found

    DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development.

    Get PDF
    BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway

    Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Get PDF
    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.No sponso

    Selection of effective antisense oligodeoxynucleotides with a green fluorescent protein-based assay. Discovery of selective and potent inhibitors of glutathione S-transferase Mu expression

    No full text
    Antisense oligodeoxynucleotides (AS-ODNs) are frequently used for the down-regulation of protein expression. Because the majority of potential antisense sequences lacks effectiveness, fast screening methods for the selection of effective AS-ODNs are needed. We describe a new cellular screening assay for the evaluation of the potency and specificity of new antisense sequences. Fusion constructs of the gene of interest and the gene encoding the enhanced green fluorescent protein (EGFP) are cotransfected with AS-ODNs to COS-7 cells. Subsequently, cells are analysed for expression of the EGFP fusion protein by flow cytometry. With the assay, we tested the effectiveness of a set of 15 phosphorothioate ODNs against rat glutathione S-transferase Mu1 (GSTM1) and/or Mu2 (GSTM2). We found several AS-ODNs that demonstrated potent, sequence-specific, and concentration-dependent inhibition of fusion protein expression. At 0.5 microm, AS-6 and AS-8 inhibited EGFP-GSTM1 expression by 95 +/- 4% and 81 +/- 6%, respectively. AS-5 and AS-10 were selective for GSTM2 (82 +/- 4% and 85 +/- 0.4% decrease, respectively). AS-2 and AS-3, targeted at homologous regions in GSTM1 and GSTM2, inhibited both isoforms (77-95% decrease). Other AS-ODNs were not effective or displayed non-target-specific inhibition of protein expression. The observed decrease in EGFP expression was accompanied by a decrease in GSTM enzyme activity. As isoform-selective, chemical inhibitors of GSTM and GSTM knock-out mice are presently unavailable, the selected AS-ODNs constitute important tools for the study of the role of GSTM in detoxification of xenobiotics and protection against chemical-induced carcinogenesis

    Scavenger Receptor-AI-Targeted Iron Oxide Nanoparticles for In Vivo MRI Detection of Atherosclerotic Lesions

    No full text
    In search of molecular imaging modalities for specific detection of inflammatory atherosclerotic plaques, we explored the potential of targeting scavenger receptor-AI (SR-AI), which is highly expressed by lesional macrophages and linked to effective internalization machinery. Ultrasmall superparamagnetic iron oxide particles were conjugated to a peptidic SR-AI ligand (0.371 mol Fe/L and 0.018 mol PP1/L). In vitro incubation of human or murine macrophages with SR-AI-targeted USPIO led to significantly higher iron uptake in vitro than with nontargeted USPIO, as judged by quantitative atomic absorption spectroscopy and Perl's staining. Incremental uptake was strictly mediated by SRs. SR-AI-targeted USPIO displayed accelerated plasma decay and a 3.5-fold increase (P=0.01) in atherosclerotic plaque accumulation on intravenous injection into apolipoprotein E-deficient mice compared with nontargeted USPIO. In addition, atherosclerotic humanized LDLr(-/-) chimeras with leukocyte expression of human SR-AI showed a significant improvement in contrast-to-noise ratio (2.7-fold; P=0.003) in the atherosclerotic aortic arch plaques 24 hours after injection of SR-AI-targeted USPIO compared with chimeras with leukocyte SR-AI deficiency. Collectively, our data provide several lines of evidence that SR-AI-targeted molecular imaging of USPIO-based contrast agents holds great promise for in situ detection of inflammatory plaques in manifest atherosclerosi
    corecore