28 research outputs found
Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes - A Meta-analysis.
BACKGROUND: Recent meta-analyses show that individuals with high risk variants in CHRNA5 on chromosome 15q25 are likely to develop lung cancer earlier than those with low-risk genotypes. The same high-risk genetic variants also predict nicotine dependence and delayed smoking cessation. It is unclear whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not. METHODS: Meta-analyses examined the association between smoking cessation and lung cancer risk in 15 studies of individuals with European ancestry who possessed varying rs16969968 genotypes (N=12,690 ever smokers, including 6988 cases of lung cancer and 5702 controls) in the International Lung Cancer Consortium. RESULTS: Smoking cessation (former vs. current smokers) was associated with a lower likelihood of lung cancer (OR=0.48, 95%CI=0.30-0.75, p=0.0015). Among lung cancer patients, smoking cessation was associated with a 7-year delay in median age of lung cancer diagnosis (HR=0.68, 95%CI=0.61-0.77, p=4.9∗10(-10)). The CHRNA5 rs16969968 risk genotype (AA) was associated with increased risk and earlier diagnosis for lung cancer, but the beneficial effects of smoking cessation were very similar in those with and without the risk genotype. CONCLUSION: We demonstrate that quitting smoking is highly beneficial in reducing lung cancer risks for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Smokers with high-risk CHRNA5 genotypes, on average, can largely eliminate their elevated genetic risk for lung cancer by quitting smoking- cutting their risk of lung cancer in half and delaying its onset by 7years for those who develop it. These results: 1) underscore the potential value of smoking cessation for all smokers, 2) suggest that CHRNA5 rs16969968 genotype affects lung cancer diagnosis through its effects on smoking, and 3) have potential value for framing preventive interventions for those who smoke
Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability
The Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group (PGC-PTSD) combined genome-wide case-control molecular genetic data across 11 multiethnic studies to quantify PTSD heritability, to examine potential shared genetic risk with schizophrenia, bipolar disorder, and major depressive disorder and to identify risk loci for PTSD. Examining 20 730 individuals, we report a molecular genetics-based heritability estimate (h 2 SNP) for European-American females of 29% that is similar to h 2 SNP for schizophrenia and is substantially higher than h 2 SNP in European-American males (estimate not distinguishable from zero). We found strong evidence of overlapping genetic risk between PTSD and schizophrenia along with more modest evidence of overlap with bipolar and major depressive disorder. No single-nucleotide polymorphisms (SNPs) exceeded genome-wide significance in the transethnic (overall) meta-analysis and we do not replicate previously reported associations. Still, SNP-level summary statistics made available here afford the best-available molecular genetic index of PTSD - for both European- and African-American individuals - and can be used in polygenic risk prediction and genetic correlation studies of diverse phenotypes. Publication of summary statistics for 1/410 000 African Americans contributes to the broader goal of increased ancestral diversity in genomic data resources. In sum, the results demonstrate genetic influences on the development of PTSD, identify shared genetic risk between PTSD and other psychiatric disorders and highlight the importance of multiethnic/racial samples. As has been the case with schizophrenia and other complex genetic disorders, larger sample sizes are needed to identify specific risk loci
A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder
Background: The nature and underlying mechanisms of the observed increased vulnerability to posttraumatic stress disorder (PTSD) in women are unclear. Methods: We investigated the genetic overlap of PTSD with anthropometric traits and reproductive behaviors and functions in women. The analysis was conducted using female-specific summary statistics from large genome-wide association studies (GWAS) and a cohort of 3577 European American women (966 PTSD cases and 2611 trauma-exposed controls). We applied a high-resolution polygenic score approach and Mendelian randomization analysis to investigate genetic correlations and causal relationships. Results: We observed an inverse association of PTSD with genetically determined anthropometric traits related to body shape, independent of body mass index (BMI). The top association was related to BMI-adjusted waist circumference (WCadj; R = -0.079, P < 0.001, Q = 0.011). We estimated a relative decrease of 64.6% (95% confidence interval = 27.5-82.7) in the risk of PTSD per 1-SD increase in WCadj. MR-Egger regression intercept analysis showed no evidence of pleiotropic effects in this association (Ppleiotropy = 0.979). We also observed associations of genetically determined WCadj with age at first sexual intercourse and number of sexual partners (P = 0.013 and P < 0.001, respectively). Conclusions: There is a putative causal relationship between genetically determined female body shape and PTSD, which could be mediated by evolutionary mechanisms involved in human sexual behaviors
Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium
Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion
Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits
Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N = 33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (r(g) = 0.40-1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking
CHRNA5 variant predicts smoking cessation in patients with acute myocardial infarction
While smoking is a major modifiable risk factor for secondary prevention of myocardial infarction (MI), active smoking is common among patients hospitalized with acute MI. Recent studies suggest that nicotinic receptor variants, and specifically the high-risk CHRNA5 rs16969968 A allele, are associated with cessation failure among noncardiac patients. This study investigates the association between CHRNA5 rs16969968 and smoking cessation in patients hospitalized with acute MI.Using data from the TRIUMPH study, we ascertained smoking status at the time of index hospitalization for acute MI and 1 year after hospitalization. After adjusting for age and sex, we used logistic regression to model the association between smoking cessation and CHRNA5 rs16969968.At index admission, 752 Caucasian subjects were active smokers and 699 were former smokers. Among these ever-smokers, the A allele was associated with significantly decreased abstinence (45.0% abstinence for A allele carriers vs. 51.7% for GG homozygotes; odds ratio [OR] = 0.70, 95% confidence interval [CI] = 0.56-0.88, p = .0027). The A allele was also significantly associated with decreased abstinence at 1 year (69.1% abstinence for A allele carriers vs. 76.0% for GG homozygotes; OR = 0.70, 95% CI = 0.53-0.94, p = .0185).Among patients who have smoked and who are hospitalized with acute MI, the high-risk CHRNA5 allele was associated with lower likelihood of quitting before hospitalization and significantly less abstinence 1 year after hospitalization with MI. The CHRNA5 rs16969968 genotype may therefore identify patients who would benefit from aggressive, personalized smoking cessation intervention.Li-Shiun Chen, Richard G. Bach, Petra A. Lenzini, John A. Spertus, Laura Jean Bierut, Sharon Cresci ... at al
A novel genetic marker of decreased inflammation and improved survival after acute myocardial infarction
The CHRNA5 gene encodes a neurotransmitter receptor subunit involved in multiple processes, including cholinergic autonomic nerve activity and inflammation. Common variants in CHRNA5 have been linked with atherosclerotic cardiovascular disease. Association of variation in CHRNA5 and specific haplotypes with cardiovascular outcomes has not been described. The aim of this study was to examine the association of CHRNA5 haplotypes with gene expression and mortality among patients with acute myocardial infarction (AMI) and explore potential mechanisms of this association. Patients (N = 2054) hospitalized with AMI were genotyped for two common variants in CHRNA5. Proportional hazard models were used to estimate independent association of CHRNA5 haplotype with 1-year mortality. Both individual variants were associated with mortality (p = 0.0096 and 0.0004, respectively) and were in tight LD (D' = 0.99). One haplotype, HAP3, was associated with decreased mortality one year after AMI (adjusted HR = 0.42, 95% CI 0.26, 0.68; p = 0.0004). This association was validated in an independent cohort (N = 637) of post-MI patients (adjusted HR = 0.23, 95% CI 0.07, 0.79; p = 0.019). Differences in CHRNA5 expression by haplotype were investigated in human heart samples (n = 28). Compared with non-carriers, HAP3 carriers had threefold lower cardiac CHRNA5 mRNA expression (p = 0.023). Circulating levels of the inflammatory marker hsCRP were significantly lower in HAP3 carriers versus non-carriers (3.43 ± 4.2 versus 3.91 ± 5.1; p = 0.0379). Activation of the inflammasome, an important inflammatory complex involved in cardiovascular disease that is necessary for release of the pro-inflammatory cytokine IL-1 β, was assessed in bone marrow-derived macrophages (BMDM) from CHRNA5 knockout mice and wild-type controls. In BMDM from CHRNA5 knockout mice, IL-1β secretion was reduced by 50% compared to wild-type controls (p = 0.004). Therefore, a common haplotype of CHRNA5 that results in reduced cardiac expression of CHRNA5 and attenuated macrophage inflammasome activation is associated with lower mortality after AMI. These results implicate CHRNA5 and the cholinergic anti-inflammatory pathway in survival following AMI.Edward D. Coverstone, Richard G. Bach, LiShiun Chen, Laura J. Bierut, Allie Y. Li, Petra A. Lenzini ... et al