34 research outputs found

    COPD exacerbation: Lost in translation

    Get PDF
    The introduction and acceptance of a standard definition for exacerbations of COPD can be helpful in prompt diagnosis and management of these events. The latest GOLD executive committee recognised this necessity and it has now included a definition of exacerbation in the guidelines for COPD which is an important step forward in the management of the disease. This definition is pragmatic and compromises the different approaches for exacerbation. However, the inclusion of the "healthcare utilisation" approach (".. may warrant a change in regular medication") in the definition may introduce in the diagnosis of exacerbation factors related to the access to health care services which may not be related to the underlying pathophysiologal process which characterizes exacerbations. It should be also noted that the aetiology of COPD exacerbations has not yet been included in the current definition. In this respect, the definition does not acknowledge the fact that many patients with COPD may suffer from additional conditions (i.e. congestive cardiac failure or pulmonary embolism) that can masquerade as exacerbations but they should not be considered as causes of them. The authors therefore suggest that an inclusion of the etiologic factors of COPD exacerbations in the definition. Moreover, COPD exacerbations are characterized by increased airway and systemic inflammation and significant deterioration in lung fuction. These fundamental aspects should be accounted in diagnosis/definition of exacerbations. This could be done by the introduction of a "laboratory" marker in the diagnosis of these acute events. The authors acknowledge that the use of a test or a biomarker in the diagnosis of exacerbations meets certain difficulties related to performing lung function tests or to sampling during exacerbations. However, the introduction of a test that reflects airway or systemic inflammation in the diagnosis of exacerbations might be another step forward in the management of COPD

    Exhaled breath condensate cysteinyl leukotrienes and airway remodeling in childhood asthma: a pilot study

    Get PDF
    BACKGROUND: It has been suggested that cysteinyl leukotrienes (cysLTs) play an important role in airway remodeling. Previous reports have indicated that cysLTs augment human airway smooth muscle cell proliferation. Recently, cysLTs have been measured in exhaled breath condensate (EBC). The aim of this study was to evaluate the relationship between cysLTs in EBC and another marker of airway remodeling, reticular basement membrane (RBM) thickening, in endobronchial biopsies in children. METHODS: 29 children, aged 4–15 years, with moderate to severe persistent asthma, who underwent bronchoscopy as part of their clinical assessment, were included. Subjects underwent spirometry and EBC collection for cysLTs analysis, followed by bronchoscopy and endobronchial biopsy within 24 hours. RESULTS: EBC cysLTs were significantly lower in asthmatic children who were treated with montelukast than in those who were not (median (interquartile range) 36.62 (22.60–101.05) versus 249.1 (74.21–526.36) pg/ml, p = 0.004). There was a significant relationship between EBC cysLTs and RBM thickness in the subgroup of children who were not treated with montelukast (n = 13, r = 0.75, p = 0.003). CONCLUSION: EBC cysLTs appear to be associated with RBM thickening in asthma

    Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The collection of exhaled breath condensate (EBC) is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments.</p> <p>Methods</p> <p>EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB<sub>4</sub>, PGE<sub>2</sub>, 8-isoprostane and cys-LTs were determined.</p> <p>Results</p> <p>EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB<sub>4 </sub>and PGE<sub>2</sub>) or showed higher concentrations (8-isoprostane). However, NOx was detected only in EBC sampled by ECoScreen.</p> <p>Conclusion</p> <p>ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.</p

    Surviving crack: a qualitative study of the strategies and tactics developed by Brazilian users to deal with the risks associated with the drug

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to marginalization, trafficking violence, conflicts with the police and organic and social psychological problems associated with the drug, crack is one of the most devastating drugs currently in use. However, there is evidence that some users manage to stay alive and active while using crack cocaine for many years, despite the numerous adversities and risks involved with this behavior. In this context, the aim of the present study was to identify the strategies and tactics developed by crack users to deal with the risks associated with the culture of use by examining the survival strategies employed by long-term users.</p> <p>Method</p> <p>A qualitative research method was used involving semi-structured, in-depth interviews. Twenty-eight crack users fulfilling a pre-defined enrollment criterion were interviewed. This criterion was defined as the long-term use of crack (i.e., at least four years). The sample was selected using information provided by key informants and distributed across eight different supply chains. The interviews were literally transcribed and analyzed via content analysis techniques using NVivo-8 software.</p> <p>Results</p> <p>There was diversity in the sample with regard to economic and education levels. The average duration of crack use was 11.5 years. Respondents believed that the greatest risks of crack dependence were related to the drug's psychological effects (e.g., cravings and transient paranoid symptoms) and those arising from its illegality (e.g., clashes with the police and trafficking). Protection strategies focused on the control of the psychological effects, primarily through the consumption of alcohol and marijuana. To address the illegality of the drug, strategies were developed to deal with dealers and the police; these strategies were considered crucial for survival.</p> <p>Conclusions</p> <p>The strategies developed by the respondents focused on trying to protect themselves. They proved generally effective, though they involved risks of triggering additional problems (e.g., other dependencies) in the long term.</p

    Bayesian analysis of Jolly-Seber type models; Incorporating heterogeneity in arrival and departure

    Get PDF
    We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups. The approach is shown to provide new ecological insights about the stopover behaviour of semipalmated sandpipers but is generally applicable to any population in which animals arrive in groups and potentially exhibit heterogeneity in terms of one or more other processes

    Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic <it>in vivo </it>situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.</p> <p>Methods</p> <p>Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).</p> <p>Results</p> <p>BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes.</p> <p>Conclusion</p> <p>This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.</p

    Novel insights into the aetiology and pathophysiology of increased airway inflammation during COPD exacerbations

    Get PDF
    Airway inflammation increases during acute exacerbations of COPD. Extrinsic factors, such as airway infections, increased air pollution, and intrinsic factors, such as increased oxidative stress and altered immunity may contribute to this increase. The evidence for this and the potential mechanisms by which various aetiological agents increase inflammation during COPD exacerbations is reviewed. The pathophysiologic consequences of increased airway inflammation during COPD exacerbations are also discussed. This review aims to establish a cause and effect relationship between etiological factors of increased airway inflammation and COPD exacerbations based on recently published data. Although it can be speculated that reducing inflammation may prevent and/or treat COPD exacerbations, the existing anti-inflammatory treatments are modestly effective

    Heme oxygenase-1 and carbon monoxide in pulmonary medicine

    Get PDF
    Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXα, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
    corecore