19 research outputs found

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion.

    No full text
    Lesions of area MT/V5 in monkeys and its presumed homologue, the motion area, in humans impair motion perception, including the discrimination of the direction of global motion in random dot kinematograms. Here we report the results of similar tests on patient TF, who has a discrete and very small, unilateral infarct in the medial superior part of the right occipital cortex. Structural MRI, co-registered in software with a standardized human brain atlas, reveals that the lesion involves area V2. The patient was impaired in his retinotopically corresponding left lower quadrant on several motion tasks including discrimination in random dot kinematograms of direction, speed and motion-defined discontinuity. He was also impaired on tasks selectively involving first-order motion based on luminance contrast but not on second-order motion based on texture contrast. The results show that even though area MT/V5 is intact, motion perception is abnormal and, in particular, his perception of first-order motion is impaired

    Visual deficits in a patient with 'kaleidoscopic disintegration of the visual world'.

    No full text
    We describe psychophysical, neuropsychological and neuro-ophthalmological studies of visual abilities in a patient who, following a right hemisphere stroke, had difficulty in combining parts of objects into a whole and in reading. Strikingly, her perceptual problems were accentuated when the objects moved or when she moved. Formal testing showed that her main deficits were in depth perception, various tasks of motion and object recognition of degraded stimuli. But low-level detection and discrimination of form and color were normal. Despite her deficits in visual motion and degraded static-object recognition, her visual recognition of 'biological motion' stimuli was normal. Structural magnetic resonance imaging revealed an infarct in the ventro-medial occipito-temporal region, extending ventro-laterally and leading to a 'kaleidoscopic disintegration of visible objects'

    Can spatial and temporal motion integration compensate for deficits in local motion mechanisms?

    No full text
    We studied the motion perception of a patient, AMG, who had a lesion in the left occipital lobe centered on visual areas V3 and V3A, with involvement of underlying white matter. As shown by a variety of psychophysical tests involving her perception of motion, the patient was impaired at motion discriminations that involved the detection of small displacements of random-dot displays, including local speed discrimination. However, she was unimpaired on tests that required spatial and temporal integration of moving displays, such as motion coherence. The results indicate that she had a specific impairment of the computation of local but not global motion and that she could not integrate motion information across different spatial scales. Such a specific impairment has not been reported before
    corecore