23 research outputs found

    Vulnerability of existing and planned coal-fired power plants in Developing Asia to changes in climate and water resources

    Get PDF
    Coal power generation dominates electricity supply in Developing Asia, and more than 400 gigawatts (GW) of new coal-fired capacity is planned for operation by 2030. Past studies on thermal electricity-water nexus have not accounted for this new capacity, and use coarse spatial and temporal resolutions in the assessment of long-term power system reliability. Here, high-resolution hydro-climatic simulations and asset-level power plant water use models are integrated to quantify water constraints on coal-fired power plants in Developing Asia, for different scenarios of future climate change, cooling system choice, and capacity expansion. Future climate change and capacity expansion decrease the annual usable capacity factor (UF) of coal power generation in Mongolia, Southeast Asia, and parts of India and China. The negative impacts are lessened by widening the geographic areas of aggregation. Under near-term mitigation scenarios with high penetrations of CO2 capture technology, the regional average water withdrawal intensity of coal power generation is 50–80% higher than current conditions. With careful siting, the increased water withdrawal intensity does not necessarily constrain future electricity production on annual or monthly time scales, but decreases system reliability by increasing the probability of low UF at daily time scale. Our findings highlight the unaccounted-for-risk in Developing Asia's long-term power plan featuring coal power generation. Regional capacity expansion should consider the reliability of future thermal power assets under long-term hydroclimate change using high-resolution models and multiple scenarios

    Environmental Consequences of Potential Strategies for China to Prepare for Natural Gas Import Disruptions

    Get PDF
    Worldwide efforts to switch away from coal have increased the reliance on natural gas imports for countries with inadequate domestic production. In preparing for potential gas import disruptions, there have been limited attempts to quantify the environmental and human health impacts of different options and incorporate them into decision-making. Here, we analyze the air pollution, human health, carbon emissions, and water consumption impacts under a set of planning strategies to prepare for potentially fully disrupted natural gas imports in China. We find that, with China’s current natural gas storage capacity, compensating for natural gas import disruptions using domestic fossil fuels (with the current average combustion technology) could lead up to 23,300 (95% CI: 22,100–24,500) excess premature deaths from air pollution, along with increased carbon emissions and aggravated water stress. Improving energy efficiency, more progressive electrification and decarbonization, cleaner fossil combustion, and expanding natural gas storage capacity can significantly reduce the number of excess premature deaths and may offer opportunities to reduce negative carbon and water impacts simultaneously. Our results highlight the importance for China to increase the domestic storage capacity in the short term, and more importantly, to promote a clean energy transition to avoid potentially substantial environmental consequences under intensifying geopolitical uncertainties in China. Therefore, mitigating potential negative environmental impacts related to insecure natural gas supply provides additional incentives for China to facilitate a clean and efficient energy system transition

    Global assessment of the carbon–water tradeoff of dry cooling for thermal power generation

    Get PDF
    Water scarcity and climate change are dual challenges that could potentially threaten energy security. Yet, integrated water–carbon management frameworks coupling diverse water- and carbon-mitigation technologies at high spatial heterogeneity are largely underdeveloped. Here we build a global unit-level framework to investigate the CO2 emission and energy penalty due to the deployment of dry cooling—a critical water mitigation strategy—together with alternative water sourcing and carbon capture and storage under climate scenarios. We find that CO2 emission and energy penalty for dry cooling units are location and climate specific (for example, 1–15% of power output), often demonstrating notably faster efficiency losses than rising temperature, especially under the high climate change scenario. Despite energy and CO2 penalties associated with alternative water treatment and carbon capture and storage utilization, increasing wastewater and brine water accessibility provide potential alternatives to dry cooling for water scarcity alleviation, whereas CO2 storage can help to mitigate dry cooling-associated CO2 emission tradeoffs when alternative water supply is insufficient. By demonstrating an integrative planning framework, our study highlights the importance of integrated power sector planning under interconnected dual water–carbon challenges

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice

    Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    No full text
    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe

    Exercise-induced changes in circulating levels of transforming growth factor-ß-1 in humans: methodological considerations

    Get PDF
    The appropriate use of systemic antifungals is vital in the prevention and treatment of invasive fungal infection (IFI) in immunosuppressed children and neonates. This multicenter observational study describes the inpatient prescribing practice of antifungal drugs for children and neonates and identifies factors associated with prescribing variability. A single-day point prevalence study of antimicrobial use in hospitalized neonates and children was performed between October and December 2012. The data were entered through a study-specific Web-based portal using a standardized data entry protocol. Data were recorded from 17,693 patients from 226 centers. A total of 136 centers recorded data from 1,092 children and 380 neonates receiving at least one antifungal agent. The most frequently prescribed systemic antifungals were fluconazole (n=355) and amphotericin B deoxycholate (n=195). The most common indications for antifungal administration in children were medical prophylaxis (n=325), empirical treatment of febrile neutropenia (n=122), and treatment of confirmed or suspected IFI (n=100 [14%]). The treatment of suspected IFI in low-birthweight neonates accounted for the majority of prescriptions in the neonatal units (n=103). An analysis of variance (ANOVA) demonstrated no significant effect of clinical indication (prophylaxis or treatment of systemic or localized infection) on the total daily dose (TDD). Fewer than one-half of the patients (n=371) received a TDD within the dosing range recommended in the current guidelines. Subtherapeutic doses were prescribed in 416 cases (47%). The predominance of fluconazole and high incidence of subtherapeutic doses in participating hospitals may contribute to suboptimal clinical outcomes and an increased predominance of resistant pathogenic fungi. A global consensus on antifungal dosing and coordinated stewardship programs are needed to promote the consistent and appropriate use of antifungal drugs in neonates and children

    Procedural justice in carbon capture and storage

    No full text
    This paper examines where and how claims of procedural injustice, or demands for procedural justice, might arise with respect to carbon capture and storage (CCS), taking a broad view of the CCS research, development and deployment process. It considers the principles that might govern such claims and seeks to identify where responsibility might lie for ensuring justice, or addressing contested claims of injustice. It is suggested that claims of procedural injustice arising from CCS are most likely to arise during implementation, from locally affected populations, raising concerns of inadequate information or consultation; but they may also arise from representatives of other indirectly affected groups, such as those affected by upstream impacts of coal mining, or energy market consequences of CCS policy. It is further suggested that claims are most likely to be directed at public authorities in respect of decisions over policy, strategy or authorisations for individual developments, but there are also routes by which claims may be directed at the corporations involved, especially under human rights provisions. The paper suggests a need for careful consideration of both procedural and, by implication, distributive justice matters in the emerging regulatory and support framework for CCS, with a particular imperative for moving public engagement upstream prior to deployment and indeed even to research programmes, to maximise the scope for legitimate influence on future outcomes
    corecore