11 research outputs found

    Analysis of among-site variation in substitution patterns

    Get PDF
    Substitution patterns among nucleotides are often assumed to be constant in phylogenetic analyses. Although variation in the average rate of substitution among sites is commonly accounted for, variation in the relative rates of specific types of substitution is not. Here, we review details of methodologies used for detecting and analyzing differences in substitution processes among predefined groups of sites. We describe how such analyses can be performed using existing phylogenetic tools, and discuss how new phylogenetic analysis tools we have recently developed can be used to provide more detailed and sensitive analyses, including study of the evolution of mutation and substitution processes. As an example we consider the mitochondrial genome, for which two types of transition deaminations (C⇒T and A⇒G) are strongly affected by single-strandedness during replication, resulting in a strand asymmetric mutation process. Since time spent single-stranded varies along the mitochondrial genome, their differential mutational response results in very different substitution patterns in different regions of the genome

    Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish

    Get PDF
    Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets - adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described - all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC

    Structural transformation to attain responsible BIOSciences (STARBIOS2)

    No full text
    Promoting Responsible Research and Innovation (RRI) is a major strategy of the "Science with and for Society" work program of the European Union's Horizon 2020 Framework Programme for Research and Innovation. RRI aims to achieve a better alignment of research and innovation with the values, needs, and expectations of society. The RRI strategy includes the "keys" of public engagement, open access, gender, ethics, and science education. The Structural Transformation to Attain Responsible BIOSciences (STARBIOS2) project promotes RRI in 6 European research institutions and universities from Bulgaria, Germany, Italy, Slovenia, Poland, and the United Kingdom, in partnership with a further 6 institutions from Brazil, Denmark, Italy, South Africa, Sweden, and the United States
    corecore