126 research outputs found

    Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films

    Full text link
    Multiferroic BiFeO3 epitaxial films with thickness ranging from 40 nm to 960 nm were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. X-ray characterization shows that the structure evolves from angularly-distorted tetragonal with c/a ~ 1.04 to more bulk-like distorted rhombohedral (c/a ~ 1.01) as the strain relaxes with increasing thickness. Despite this significant structural evolution, the ferroelectric polarization along the body diagonal of the distorted pseudo-cubic unit cells, as calculated from measurements along the normal direction, barely changes.Comment: Legend in Fig.3 corrected and et

    Development of boron calibration via hybrid comparator method in prompt gamma activation analysis

    Get PDF
    The prompt gamma activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory at The University of Texas at Austin was utilized to quantify boron concentrations in boron carbide semiconductor films deposited on silicon substrates. Calibration was complicated by the unique and varying sample geometries analyzed. In addition, there was a dearth of solid materials available with quantified boron concentrations having comparable or readily modifiable dimensions to exploit for calibration purposes. Therefore, a novel hybrid comparator method was developed for the quantification of boron utilizing aluminum as an inexpensive and easily machinable reference material. Aluminum samples were manufactured with high tolerances to match the geometry of each sample of interest. Each boron carbide film sample and its congruent aluminum sample were measured in the PGAA system. The measured aluminum responses and relevant nuclear parameters were used to standardize the measurements. A boron standard was created using a procedure derived from a similar approach used by the National Institute of Standards and Technology. Quality control measurements using this standard show that the method provided accuracy to within 5% for boron quantification

    Super switching and control of in-plane ferroelectric nanodomains in strained thin films

    Get PDF
    With shrinking device sizes, controlling domain formation in nanoferroelectrics becomescrucial. Periodic nanodomains that self-organize into so-called ‘superdomains’ have beenrecently observed, mainly at crystal edges or in laterally confined nanoobjects. Here we showthat in extended, strain-engineered thin films, superdomains with purely in-plane polarizationform to mimic the single-domain ground state, a new insight that allows a priori design ofthese hierarchical domain architectures. Importantly, superdomains behave like strain-neutralentities whose resultant polarization can be reversibly switched by 90 deg, offering promisingperspectives for novel device geometries

    The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere

    Get PDF
    We present an overview of recent multidisciplinary, multi-institutional efforts to identify and date major sources of combustion aerosol in the current and paleoatmospheres. The work was stimulated, in part, by an atmospheric particle \u27sample of opportunity\u27 collected at Summit, Greenland in August 1994, that bore the 14C imprint of biomass burning. During the summer field seasons of 1995 and 1996, we collected air filter, surface snow and snowpit samples to investigate chemical and isotopic evidence of combustion particles that had been transported from distant fires. Among the chemical tracers employed for source identification are organic acids, potassium and ammonium ions, and elemental and organic components of carbonaceous particles. Ion chromatography, performed by members of the Climate Change Research Center (University of New Hampshire), has been especially valuable in indicating periods at Summit that were likely to have been affected by the long range transport of biomass burning aerosol. Univariate and multivariate patterns of the ion concentrations in the snow and ice pinpointed surface and snowpit samples for the direct analysis of particulate (soot) carbon and carbon isotopes. The research at NIST is focusing on graphitic and polycyclic aromatic carbon, which serve as almost certain indicators of fire, and measurements of carbon isotopes, especially 14C, to distinguish fossil and biomass combustion sources. Complementing the chemical and isotopic record, are direct \u27visual\u27 (satellite imagery) records and less direct backtrajectory records, to indicate geographic source regions and transport paths. In this paper we illustrate the unique way in which the synthesis of the chemical, isotopic, satellite and trajectory data enhances our ability to develop the recent history of the formation and transport of soot deposited in the polar snow and ice

    Temperature Driven Structural Phase Transition in Tetragonal-Like BiFeO3

    Full text link
    Highly-strained BiFeO3 exhibits a "tetragonal-like, monoclinic" crystal structure found only in epitaxial films (with an out-of-plane lattice parameter exceeding the in-plane value by >20%). Previous work has shown that this phase is properly described as a MC_{C} monoclinic structure at room temperature [with a (010)pc_{pc} symmetry plane, which contains the ferroelectric polarization]. Here we show detailed temperature-dependent x-ray diffraction data that evidence a structural phase transition at ~100C to a high-temperature MA_{A} phase ["tetragonal-like" but with a (1-10)pc_{pc} symmetry plane]. These results indicate that the ferroelectric properties and domain structures of strained BiFeO3_3 will be strongly temperature dependent.Comment: 10 pages, 3 figure
    • …
    corecore