459 research outputs found

    Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry

    Full text link
    We study the commutation relations, uncertainty relations and spectra of position and momentum operators within the framework of quantum group % symmetric Heisenberg algebras and their (Bargmann-) Fock representations. As an effect of the underlying noncommutative geometry, a length and a momentum scale appear, leading to the existence of minimal nonzero uncertainties in the positions and momenta. The usual quantum mechanical behaviour is recovered as a limiting case for not too small and not too large distances and momenta.Comment: 15 pages, Latex, preprint DAMTP/93-6

    Classification of quantum relativistic orientable objects

    Full text link
    Started from our work "Fields on the Poincare Group and Quantum Description of Orientable Objects" (EPJC,2009), we consider here a classification of orientable relativistic quantum objects in 3+1 dimensions. In such a classification, one uses a maximal set of 10 commuting operators (generators of left and right transformations) in the space of functions on the Poincare group. In addition to usual 6 quantum numbers related to external symmetries (given by left generators), there appear additional quantum numbers related to internal symmetries (given by right generators). We believe that the proposed approach can be useful for description of elementary spinning particles considering as orientable objects. In particular, their classification in the framework of the approach under consideration reproduces the usual classification but is more comprehensive. This allows one to give a group-theoretical interpretation to some facts of the existing phenomenological classification of known spinning particles.Comment: 24 page

    On Quantum Field Theory with Nonzero Minimal Uncertainties in Positions and Momenta

    Get PDF
    We continue studies on quantum field theories on noncommutative geometric spaces, focusing on classes of noncommutative geometries which imply ultraviolet and infrared modifications in the form of nonzero minimal uncertainties in positions and momenta. The case of the ultraviolet modified uncertainty relation which has appeared from string theory and quantum gravity is covered. The example of euclidean ϕ4\phi^4-theory is studied in detail and in this example we can now show ultraviolet and infrared regularisation of all graphs.Comment: LaTex, 32 page

    Hyperspherical harmonics with arbitrary arguments

    Full text link
    The derivation scheme for hyperspherical harmonics (HSH) with arbitrary arguments is proposed. It is demonstrated that HSH can be presented as the product of HSH corresponding to spaces with lower dimensionality multiplied by the orthogonal (Jacobi or Gegenbauer) polynomial. The relation of HSH to quantum few-body problems is discussed. The explicit expressions for orthonormal HSH in spaces with dimensions from 2 to 6 are given. The important particular cases of four- and six-dimensional spaces are analyzed in detail and explicit expressions for HSH are given for several choices of hyperangles. In the six-dimensional space, HSH representing the kinetic energy operator corresponding to i) the three-body problem in physical space and ii) four-body planar problem are derived.Comment: 18 pages, 1 figur

    Symmetric coupling of four spin-1/2 systems

    Full text link
    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.Comment: 20 pages, no figure

    Semiclassical Analysis of the Wigner 12j12j Symbol with One Small Angular Momentum

    Full text link
    We derive an asymptotic formula for the Wigner 12j12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave-functions to derive asymptotic formulas for the 9j9j symbol with small and large angular momenta. When applying the same technique to the 12j12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j12j symbol is expressed in terms of the vector diagram for a 9j9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj3nj symbols. This work contributes the first known asymptotic formula for the 12j12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j15j symbol with two small angular momenta.Comment: 15 pages, 14 figure

    A q-Deformed Schr\"odinger Equation

    Full text link
    We found hermitian realizations of the position vector r\vec{r}, the angular momentum Λ\vec{\Lambda} and the linear momentum p\vec{p}, all behaving like vectors under the suq(2)su_q(2) algebra, generated by L0L_0 and L±L_\pm. They are used to introduce a qq-deformed Schr\" odinger equation. Its solutions for the particular cases of the Coulomb and the harmonic oscillator potentials are given and briefly discussed.Comment: 14 pages, latex, no figure

    Characterisations of Classical and Non-classical states of Quantised Radiation

    Full text link
    A new operator based condition for distinguishing classical from non-classical states of quantised radiation is developed. It exploits the fact that the normal ordering rule of correspondence to go from classical to quantum dynamical variables does not in general maintain positivity. It is shown that the approach naturally leads to distinguishing several layers of increasing nonclassicality, with more layers as the number of modes increases. A generalisation of the notion of subpoissonian statistics for two-mode radiation fields is achieved by analysing completely all correlations and fluctuations in quadratic combinations of mode annihilation and creation operators conserving the total photon number. This generalisation is nontrivial and intrinsically two-mode as it goes beyond all possible single mode projections of the two-mode field. The nonclassicality of pair coherent states, squeezed vacuum and squeezed thermal states is analysed and contrasted with one another, comparing the generalised subpoissonian statistics with extant signatures of nonclassical behaviour.Comment: 16 pages, Revtex, One postscript Figure compressed and uuencoded Replaced, minor changes in eq 4.30 and 4.32. no effect on the result

    Evolution of a spinor condensate: coherent dynamics, dephasing and revivals

    Full text link
    We present measurements and a theoretical model for the interplay of spin dependent interactions and external magnetic fields in atomic spinor condensates. We highlight general features like quadratic Zeeman dephasing and its influence on coherent spin mixing processes by focusing on a specific coherent superposition state in a F=1 87^{87}Rb Bose-Einstein condensate. In particular, we observe the transition from coherent spinor oscillations to thermal equilibration

    Structure Constants for New Infinite-Dimensional Lie Algebras of U(N+,N-) Tensor Operators and Applications

    Get PDF
    The structure constants for Moyal brackets of an infinite basis of functions on the algebraic manifolds M of pseudo-unitary groups U(N_+,N_-) are provided. They generalize the Virasoro and W_\infty algebras to higher dimensions. The connection with volume-preserving diffeomorphisms on M, higher generalized-spin and tensor operator algebras of U(N_+,N_-) is discussed. These centrally-extended, infinite-dimensional Lie-algebras provide also the arena for non-linear integrable field theories in higher dimensions, residual gauge symmetries of higher-extended objects in the light-cone gauge and C^*-algebras for tractable non-commutative versions of symmetric curved spaces.Comment: 8 pages, LaTeX, no figures; minor comments added; to appear in J. Phys A (Math. Gen.
    corecore