97 research outputs found

    Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep

    Get PDF
    BACKGROUND: The callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression. RESULTS: There was a significant effect of genotype (p < 0.0001) on the transcript abundance of DLK1, PEG11, and MEG8 in the muscles of lambs with the callipyge allele. DLK1 and PEG11 transcript levels were elevated in the hypertrophied muscles of paternal heterozygous animals relative to animals of the other three genotypes. The PEG11 locus produces a single 6.5 kb transcript and two smaller antisense strand transcripts, referred to as PEG11AS, in skeletal muscle. PEG11AS transcripts were detectable over a 5.5 kb region beginning 1.2 kb upstream of the PEG11 start codon and spanning the entire open reading frame. Analysis of PEG11 expression by quantitative PCR shows a 200-fold induction in the hypertrophied muscles of paternal heterozygous animals and a 13-fold induction in homozygous callipyge animals. PEG11 transcripts were 14-fold more abundant than PEG11AS transcripts in the gluteus medius of paternal heterozygous animals. PEG11AS transcripts were expressed at higher levels than PEG11 transcripts in the gluteus medius of animals of the other three genotypes. CONCLUSIONS: The effect of the callipyge mutation has been to alter the expression of DLK1, GTL2, PEG11 and MEG8 in the hypertrophied skeletal muscles. Transcript abundance of DLK1 and PEG11 was highest in paternal heterozygous animals and exhibited polar overdominant gene expression patterns; therefore, both genes are candidates for causing skeletal muscle hypertrophy. There was unique relationship of PEG11 and PEG11AS transcript abundance in the paternal heterozygous animals that suggests a RNA interference mechanism may have a role in PEG11 gene regulation and polar overdominance in callipyge sheep

    Identification of Genes Directly Responding to DLK1 Signaling in Callipyge Sheep

    Get PDF
    Background In food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of muscle specific effects. Results The quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling. Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes, whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e increased Myh7 and decreased Myh4 luciferase activity. Conclusion The study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch and muscular hypertrophy in callipyge lamb

    The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    Get PDF
    peer-reviewedMembers of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes

    The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    Get PDF
    Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling) mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition

    A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Get PDF
    Background: The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes.Results: Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development) and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development) and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune response while the latter principally involved functions associated with transcriptional regulation of metabolic processes.Conclusions: It is concluded that during late skeletal muscle development there are substantial and coordinated changes in the transcription of a large number of genes many of which are probably triggered by increased estrogen levels. These changes probably underpin the adaption of muscle to new physiological demands in the postnatal environment

    Effect of DLK1 and RTL1 but Not MEG3 or MEG8 on Muscle Gene Expression in Callipyge Lambs

    Get PDF
    Callipyge sheep exhibit extreme postnatal muscle hypertrophy in the loin and hindquarters as a result of a single nucleotide polymorphism (SNP) in the imprinted DLK1-DIO3 domain on ovine chromosome 18. The callipyge SNP up-regulates the expression of surrounding transcripts when inherited in cis without altering their allele-specific imprinting status. The callipyge phenotype exhibits polar overdominant inheritance since only paternal heterozygous animals have muscle hypertrophy. Two studies were conducted profiling gene expression in lamb muscles to determine the down-stream effects of over-expression of paternal allele-specificDLK1 and RTL1 as well as maternal allele-specific MEG3, RTL1AS and MEG8, using Affymetrix bovine expression arrays. A total of 375 transcripts were differentially expressed in callipyge muscle and 25 transcripts were subsequently validated by quantitative PCR. The muscle-specific expression patterns of most genes were similar to DLK1 and included genes that are transcriptional repressors or affect feedback mechanisms in Ξ²-adrenergic and growth factor signaling pathways. One gene, phosphodiesterase 7A had an expression pattern similar to RTL1 expression indicating a biological activity for RTL1 in muscle. Only transcripts that localize to the DLK1-DIO3 domain were affected by inheritance of a maternal callipyge allele. Callipyge sheep are a unique model to study over expression of both paternal allele-specific genes and maternal allele-specific non-coding RNA with an accessible and nonlethal phenotype. This study has identified a number of genes that are regulated by DLK1 and RTL1expression and exert control on postnatal skeletal muscle growth. The genes identified in this model are primary candidates for naturally regulating postnatal muscle growth in all meat animal species, and may serve as targets to ameliorate muscle atrophy conditions including myopathic diseases and age-related sarcopenia

    The Imprinted Retrotransposon-Like Gene PEG11 (RTL1) Is Expressed as a Full-Length Protein in Skeletal Muscle from Callipyge Sheep

    Get PDF
    Members of the Ty3-Gypsy retrotransposon family are rare in mammalian genomes despite their abundance in invertebrates and some vertebrates. These elements contain a gag-pol-like structure characteristic of retroviruses but have lost their ability to retrotranspose into the mammalian genome and are thought to be inactive relics of ancient retrotransposition events. One of these retrotransposon-like elements, PEG11 (also called RTL1) is located at the distal end of ovine chromosome 18 within an imprinted gene cluster that is highly conserved in placental mammals. The region contains several conserved imprinted genes including BEGAIN, DLK1, DAT, GTL2 (MEG3), PEG11 (RTL1), PEG11as, MEG8, MIRG and DIO3. An intergenic point mutation between DLK1 and GTL2 causes muscle hypertrophy in callipyge sheep and is associated with large changes in expression of the genes linked in cis between DLK1 and MEG8. It has been suggested that over-expression of DLK1 is the effector of the callipyge phenotype; however, PEG11 gene expression is also strongly correlated with the emergence of the muscling phenotype as a function of genotype, muscle type and developmental stage. To date, there has been no direct evidence that PEG11 encodes a protein, especially as its anti-sense transcript (PEG11as) contains six miRNA that cause cleavage of the PEG11 transcript. Using immunological and mass spectrometry approaches we have directly identified the full-length PEG11 protein from postnatal nuclear preparations of callipyge skeletal muscle and conclude that its over-expression may be involved in inducing muscle hypertrophy. The developmental expression pattern of the PEG11 gene is consistent with the callipyge mutation causing recapitulation of the normal fetal-like gene expression program during postnatal development. Analysis of the PEG11 sequence indicates strong conservation of the regions encoding the antisense microRNA and in at least two cases these correspond with structural or functional domains of the protein suggesting co-evolution of the sense and antisense genes

    Provider verification of electronic health record receipt and nonreceipt of direct-acting antivirals for the treatment of hepatitis C virus infection.

    Get PDF
    PURPOSE: Pharmacoepidemiologic studies using electronic health record data could serve an important role in assessing safety and effectiveness of direct-acting antiviral therapy for chronic hepatitis C virus (HCV) infection, but the validity of these data needs to be determined. We evaluated the accuracy of pharmacy fill records in the national Veterans Health Administration (VA) Corporate Data Warehouse (CDW) as compared to facility-level electronic health record. METHODS: Patients prescribed a direct-acting antiviral regimen at five VA sites between 2014 and 2016 were randomly selected and reviewed. A random sample of patients with chronic HCV infection without evidence of HCV treatment during the study period also underwent chart review. We calculated positive predictive value and negative predictive value overall and by site. RESULTS: Of the 501 patients who received a total of 2416 prescriptions, 494 were validated using data extracted from CDW 6 months after the study period, yielding a positive predictive value of 98.6% (95% confidence interval, 97.6%-99.6%). Of the 100 patients with chronic HCV infection without prescriptions for HCV treatment, 99 were confirmed not to have received antiviral treatment (negative predictive value, 99.0%; 95% confidence interval, 97.1%-100%). CONCLUSIONS: These findings provide assurance to researchers who use national VA CDW data for retrospective cohort studies that the CDW contains accurate information on HCV therapies in the modern treatment era
    • …
    corecore