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Identification of genes directly responding
to DLK1 signaling in Callipyge sheep
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Abstract

Background: In food animal agriculture, there is a need to identify the mechanisms that can improve the efficiency
of muscle growth and protein accretion. Callipyge sheep provide excellent machinery since the up-regulation of
DLK1 and RTL1 results in extreme postnatal muscle hypertrophy in distinct muscles. The aim of this study is to
distinguish the genes that directly respond to DLK1 and RTL1 signaling from the genes that change as the result of
muscle specific effects.

Results: The quantitative PCR results indicated that DLK1 expression was significantly increased in hypertrophied
muscles but not in non-hypertrophied muscles. However, RTL1 was up-regulated in both hypertrophied and non-
hypertrophied muscles. Five genes, including PARK7, DNTTIP1, SLC22A3, METTL21E and PDE4D, were consistently co-
expressed with DLK1, and therefore were possible transcriptional target genes responding to DLK1 signaling.
Treatment of myoblast and myotubes with DLK1 protein induced an average of 1.6-fold and 1.4-fold increase in
Dnttip1 and Pde4d expression respectively. Myh4 expression was significantly elevated in DLK1-treated myotubes,
whereas the expression of Mettl21e was significantly increased in the DLK1-treated myoblasts but reduced in DLK1-
treated myotubes. DLK1 treatment had no impact on Park7 expression. In addition, Park7 and Dnttip1 increased
Myh4 and decreased Myh7 promoter activity, resemble to the effects of Dlk1. In contrast, expression of Mettl21e
increased Myh7 and decreased Myh4 luciferase activity.

Conclusion: The study provided additional supports that RTL1 alone was insufficient to induce muscle hypertrophy
and concluded that DLK1 was likely the primary effector of the hypertrophy phenotype. The results also suggested
that DNTTIP1 and PDE4D were secondary effector genes responding to DLK1 signaling resulting in muscle fiber switch
and muscular hypertrophy in callipyge lamb.
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Background
Callipyge sheep are well known for their postnatal
muscle hypertrophy that is prominent in loin and hind
quarters [1–3]. The muscle mass in callipyge sheep is
increased 35–40% and carcass fat is decreased 6–7%,
while the live weights are the same relative to normal
lambs [3–6]. Callipyge lambs are born with normal
muscling and hypertrophy becomes detectable at 4–
6 weeks of age [2, 4, 7, 8]. After 5 weeks of age, an
increased proportion and larger size of fast-twitch,
glycolytic muscle fibers become apparent in callipyge
muscles [7, 9]. Not all the skeletal muscles in callipyge

sheep develop hypertrophy, the supraspinatus and infra-
spinatus muscles in thoracic limbs both do not undergo
hypertrophy [1, 5, 6].
The callipyge mutation is a single base change of an A

(wild-type allele) to a G (callipyge allele) between DLK1
(Delta-Like homolog 1) and MEG3 (Maternal Expressed
Gene 3) genes in the DLK1-DIO3 (Deiodinase, Iodothyr-
onine, type III) imprinted gene cluster [10, 11]. The calli-
pyge mutation does not disrupt the protein coding
sequence. The highly conserved 12 bp sequence includ-
ing the mutation acts as a long-range control element to
alter the transcription of the surrounding imprinted
genes in cis. Specifically, the inheritance of a callipyge
allele from the sire up-regulates the transcription of the
paternal protein-coding genes DLK1 and RTL1 (Retro-
transposon-like 1), while the inheritance of a maternal
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callipyge allele enhances the expression of maternal
non-coding RNA including MEG3, MEG8 (Maternal
Expressed Gene 8) and RTL1AS (RTL1 antisense) [12–
16]. As the muscling phenotype is only expressed in het-
erozygous individuals that inherit the mutation from the
sire, it has been concluded that a paternally expressed
protein encoding gene(s) must be the primary effector.
Dlk1 encodes a transmembrane protein belonging to

the epidermal growth factor (EGF)-like repeat containing
family. It functions as an antagonist to down-regulating
Notch signaling [17, 18]. Notch signaling is involved in
conserved cell fate decisions and is known to inhibit the
expression of myogenic regulatory transcription factor
MyoD and myogenic differentiation, but enhances satel-
lite cell proliferation and self-renewal [19, 20]. Several
studies indicate that Dlk1 expression can influence post-
natal muscle growth. Transgenic mice over-expressing
Dlk1 had increased muscle mass and myofiber diameter
[21]. Similarly, mice with deletion of the maternal micro-
RNA379/544 cluster displayed muscle hypertrophic
phenotype with an elevation of Dlk1 expression, suggest-
ing the regulation of maternal imprinted microRNA on
paternal Dlk1 gene expression [22]. Muscle-specific gene
ablation of Dlk1 in the mouse resulted in reduced body
weight and skeletal muscle mass due to reduction in myo-
fiber numbers [23]. Conversely, over-expression of Dlk1 in
cell culture inhibited myoblast proliferation and enhanced
differentiation [23]. DLK1 mRNA was up-regulated in
longissimus dorsi, gluteus medius and semimembranosus,
the hypertrophied muscles in callipyge lambs but not up-
regulated in supraspinatus, the non-hypertrophied muscle
[13, 15, 24, 25]. The DLK1 protein was expressed at high
levels in the myofibers of callipyge longissimus dorsi and
semimembranosus but was not detected in normal mus-
cles [26, 27].
Similar to DLK1, the mRNA abundance of RTL1 is

also increased in the callipyge muscles. Rtl1 belongs to
Ty3-Gypsy retrotransposons gene family and contains
gag-pol-like structure common to retroviruses [28]. This
highly conserved gene has a single exon and encodes a
full length 151 kDa protein in callipyge skeletal muscles
[29]. In mouse, Rtl1 is highly expressed at the late-fetal
stage in both fetus and placenta and the loss or over-
expression of Rtl1 causes late fetal and / or neonatal le-
thality [30]. Enhanced expression of Rtl1 in liver has
been suggested to drive hepatocarcinogenesis [31]. Inter-
estingly, transgenic mice expressing ovine RTL1 in skel-
etal muscle have significant increased mass of hind legs
and quadriceps with larger myofibers in EDL (mostly
composed of glycolytic fast twitch fibers) muscle [32].
However, in callipyge sheep, the up-regulation of RTL1
is not specific to hypertrophied muscles, a lower magni-
tude of induction of RTL1 in the non-hypertrophied
muscle (supraspinatus) was detected [13], suggesting

that RTL1 alone is not the primary inducer for increased
muscle mass in callipyge sheep. These combined studies
suggest that elevated DLK1 expression is the primary
cause of callipyge muscle hypertrophy and RTL1 prob-
ably has a synergistic effect with DLK1.
MEG3, MEG8, and RTL1AS are all non-coding RNAs

that are transcribed from the maternal chromosome in
the same imprinted region. These genes are host to a
number of microRNA and snoRNA (MEG8) [33]. Mur-
ine Meg3 was proposed to possess tumor suppressor
properties [34–36] and extensive studies have been con-
ducted recently to explore the mechanisms on how
Meg3 inhibits cell growth [37–41]. Enhanced Meg3
expression was reported in obese mice and it further
aggravated glucose intolerance in these mice [42]. Fur-
thermore, during postnatal muscle development, Meg3
expression level was high after birth, however, it de-
creased rapidly afterwards in both pigs and mice [43,
44], implying its possible role in the growth of myofibers
through hyperplasia instead of hypertrophy in late devel-
opmental stages [44]. In contrast to Meg3, there are few
studies performed on Meg8. It is known that Meg8 was
expressed in embryonic brain and muscles [45]. Mater-
nal nutritional status significantly influenced MEG8
expression in fetal semitendinosus muscle in sheep [46,
47]. Temple syndrome patients have hypermethylated
region in MEG8 gene [48, 49]. Nevertheless, knowledge
about the exact function of MEG8 still remains unclear.
Rtl1as contains at least four microRNA that cause RISC-
mediated degradation of Rtl1 transcripts [50, 51]. As a
result, deletion of miR-127 (one of the microRNAs proc-
essed from Rtl1as) increased Rtl1 expression, leading to
placentomegaly and defects in the placental labyrinthine
zone [52].
Several studies have been conducted to identify tran-

scriptome changes in the muscles of callipyge animals [24,
25, 53]. Microarray analysis of gene expression in the
semimembranosus identified 375 genes that were differen-
tially expressed in callipyge versus normal lambs [24].
Twenty-five transcripts were further verified by quantita-
tive PCR [24]. It has been assumed that among these 25
transcripts, there are direct targets of DLK1 signaling that
act as secondary effectors to increase protein accretion
and fiber type changes (tertiary responses) that occur
during hypertrophy. The current study will distinguish the
genes that appear to respond to DLK1 signaling from
tertiary effects of hypertrophy (see schematic diagram,
Fig. 9a), using a broader set of hypertrophied and non-
hypertrophied muscles at an age when hypertrophy is
developing in the callipyge lamb. Genes that are tran-
scriptionally responsive to DLK1 signaling would be
expected to have a similar mRNA expression pattern as
DLK1 in all the muscle types examined. In contrast, the
tertiary responsive genes may not stringently follow the
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DLK1 expression pattern. These tertiary response genes
could show greater variability across muscle types due
to differences such as metabolism, myofiber types and
exercise. From this initial screening of candidate genes,
the effect of DLK1 as a ligand and transfection of target
genes were tested using primary mouse myoblasts to
confirm transcriptional activities in myogenesis. Since
part of the callipyge hypertrophy phenotype includes a
shift to a greater number of fast-twitch, glycolytic muscle
fibers expressing MYH4, then changes in MYH4 expres-
sion was chosen as an indicator of a tertiary response.

Methods
Sample collection
Matings between a ram that was heterozygous for the
callipyge allele and a group of normal ewes were used to
generate a cohort of callipyge and normal lambs. The
lambs were genotyped by detection of the callipyge SNP
[10, 11] and tissue samples were obtained from four
callipyge and four normal lambs at 30–35 days of age
following protocols approved by Purdue University
Animal Care and Use Committee. Seven muscles (longis-
simus dorsi, semimembranosus, semitendinosus, triceps
brachi, supraspinatus, infraspinatus, and heart) were
weighed after dissection. A small piece of sample was
preserved in RNAlater (ThermoFisher Scientific, PA,
USA) and stored at − 20 °C for further RNA extraction.
Muscle samples were homogenized in 4 M guanidinium
thiocyanate, 25 mM sodium citrate, 50 mM EDTA, and
1% sodium-N-lauroyl-sarcosine. The CsCl ultracentrifuge
method was used to isolate RNA. Briefly, the muscle hom-
ogenate was centrifuged through a CsCl cushion (5.7 M
CsCl, 50 mM EDTA) and the sedimented RNA was fur-
ther purified using NucleoSpin RNA II columns (Mach-
ery-Nagel, PA, USA) with Dnase I treatment [25].

Primary myoblast isolation and culture
Primary myoblasts were isolated from hind limb skel-
etal muscles of mice at 3–5 weeks of age. Muscles were
washed with Dulbecco’s Phosphate-Buffered Saline
(DPBS), minced and digested in type I collagenase and
dispase B mixture (Roche Applied Science, Indianapo-
lis, IN USA). The digested muscle pulp was then
filtered through a 100 μm filter (CellTrics®, Partec Inc.,
Swedesboro, NJ USA) to remove large muscle fiber
debris and then plated on collagen-coated dishes. After
3 days, cells were collected and digested with 0.025%
trypsin for 10 min with agitation. Cells were seeded in
growth media (F-10 Ham’s medium supplemented with
20% fetal bovine serum, 100 units/mL of penicillin,
100 μg/mL of streptomycin, 0. 292 mg/ml of L-
glutamine, and 4 ng/mL basic fibroblast growth factor)
on non-coated plates for 45 min to deplete fibroblasts,
as previous described [23, 54] and then transferred to

collagen (Roche Applied Science)-coated dishes. Myo-
blasts were differentiated into myotubes after plating
cells at approximately 80% confluency on Matrigel (BD
Biosciences, San Jose, CA USA) coated plates and the
addition of fusion media consisting of DMEM supple-
mented with 5% horse serum, 100 units/mL of penicil-
lin, 100 μg/mL of streptomycin, and 0. 292 mg/ml of
L-glutamine. Myoblast cultures testing the effects of
DLK1 protein were plated on a bed of 1 mg/mL BD
Matrigel containing 500 ng/mL of recombinant DLK1
protein [DLK1 (mouse): Fc(human), Adipogen Inter-
national Inc., San Diego CA USA. Cells were induced
to differentiate the next day and fused for 2 days before
mRNA isolation.

Quantitative PCR analysis
Complimentary DNA (cDNA) synthesis for measuring
RTL1 transcript abundance used gene-specific priming
of 5 μg total RNA and Superscript III reverse transcript-
ase at 50 °C (Life Technology). The cDNA synthesis for
other transcripts used random hexamer priming from
5 μg RNA and MMLV reverse transcriptase. The first
strand cDNA synthesis reaction was diluted 25-fold so
that there was an equivalent of 20 ng of input RNA per
microliter. Quantitative PCR assays were carried out in
15 μL reaction volumes of iQ SYBR Green Supermix
with cDNA equivalent to 100 ng of input RNA. All
cDNA samples were assayed in duplicate. Absolute
quantification was used to measure gene expression in
sheep muscle RNA. The quantitative PCR primers and
the plasmid standards were designed and tested accord-
ing to the methods described previously [24]. Primer
sequences are listed in Additional file 1. Cloned ampli-
cons were used as standards to calculate a regression of
threshold cycle on molecule copy number to determine
a log value of starting abundance for each of the cDNA
samples based on their threshold cycle [13]. All plasmid
standards were diluted from either 1 × 108 to 1 × 102 or
1 × 107 to 1 × 101 molecules. Quantitative PCR reactions
for standards were performed in triplicate. The variance
analysis was performed using SAS 9.2 (SAS Institute Inc.,
Cary, NC, USA) software and the MIXED procedure was
used to analyze the log value of gene expression.
Genotype was the main effect in the model and each
muscle was analyzed individually. The random effect was
defined as animal nested within genotype. The least
squares means, standard error and difference between least
squares means were calculated for the variance analysis.
Relative quantification was used to measure gene ex-

pression in DLK-treated myoblast experiments. RNA from
cultured myotubes was extracted and purified using
Nucleo Spin RNA II columns (Machery-Nagel Inc., Eas-
ton, PA USA) with DNase I treatment. First strand cDNA
was synthesized from RNA using random hexamer and
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oligo dT priming and MMLV (Life Technologies). Quanti-
tative PCR measurements were performed using the SA
Bioscience SYBR Green Supermix (QIAGEN, Valencia,
CA USA) reagents on an iCycler Real-Time PCR Detection
System (Bio-Rad Inc.). Each reaction was carried out in
15 μl reaction volumes of SA Bioscience SYBR Green
Supermix with 5 pM of each primer and diluted first-strand
cDNA. Primer sequences are listed in Additional file 1.
Ribosomal protein large protein 38 (Rplp38) was used as
the housekeeping gene control for ΔCT calculation (ΔCT =
CT of the target gene – average CT of housekeeping genes).
Fold expression values were calculated using 2-ΔΔCT

methods [55], where ΔΔCT = (ΔCT of the treatment
sample) – (ΔCT of control treatment samples) with no
added DLK1 as control treatment and normalized to 1.
Statistical significance was determined by Analysis of
Variance (ANOVA) method using SAS9.2.

Plasmid construction
Full length DNTTIP1, METTL21E and PARK7 cDNAs
were amplified by reverse transcription PCR from total
sheep RNA, directionally cloned into pENTR/SD/D-
TOPO vector (Life Technologies, Grand Island, NY
USA) and then subcloned by recombination into the
pcDNA3.2/V5-DEST expression vector (Life Technolo-
gies), according to the manufacturer’s recommendations.
The mouse pDLK1-pCMV-SPORT 6.1 plasmid was
commercially available (cat#: MMM1013–9201636,
Thermo Fisher Scientific Inc., PA USA). To confirm the
insertion of the target genes with an intact open reading
frame, all plasmids were sequenced from both directions.
The pGWCAT-pcDNA3.2 /V5 control plasmid was ob-
tained from Life Technologies.
The mouse Myh4 luciferase construct (pGL3IIB2.6)

contains 2.56 kb of the promoter region of Myh4, and
the rat Myh7 luciferase construct (p-3542β-MHCluc)
contains 3.5 kb of the promoter of Myh7 [56, 57]. The
pRL-SV40 plasmid expressing renilla luciferase was
commercially available from Promega Corporation. Plas-
mids for electroporation were purified using EndoFree
Plasmid Maxi Kit (QIAGEN) and quantified by Nano-
drop spectrophotometry (Thermo Fisher Scientific Inc.,
Rockford, IL USA.

Luciferase reporter assay
Neon ™ Transfection System (Life Technologies) was used
according to the manufacturer’s recommended protocol.
Myoblasts (2 × 105 cells) were electroporated with 3 μg of
plasmid DNA with three pulses 10 ms pulses of 1500 V. To
determine if target genes could have effects on myosin gene
expression, the effector experiments were performed by co-
transfection of protein coding sequence of the target genes
along with the myosin luciferase reporter construct. The
myosin luciferase reporter construct and the transfection

control (renilla luciferase) were kept constant first, and the
two different amounts of effector cDNA were titrated. In
order to keep a constant amount of the total plasmid DNA,
the GW-CAT was added and also used as the null control
vector. A detailed description of the plasmid combinations
are given in Additional file 2. The electroporated cells were
put into 96-well plates in growth media overnight and sub-
sequently fused into myotubes for 3 days. In Park7 lucifer-
ase experiments, the indicated concentrations of IGF1 (50,
100, and 200 ng / mL) (long®R3 IGF1, Sigma-Aldrich Co, St
Louis, MO USA) were added to the fusion medium 24 h
after differentiation and cultured for another 48 h. The re-
porter assays were performed with Dual-Luciferase Re-
porter Assay System (Promega, Madison, WI USA),
according to the manufacturer’s recommendations. The
samples were read with a Tecan Genios Pro (Tecan Group
Ltd.) plate reader. Luciferase activity was adjusted for trans-
fection efficiency by multiplying the firefly luciferase activity
of a given well by the ratio of mean renilla luciferase activ-
ity for all wells divided by renilla luciferase activity of the
given well to produce units of adjusted luciferase activity.
The results were analyzed for the addition of target con-
struct as the main effect by ANOVA using SAS 9.2 soft-
ware. The IGF1 treatment was also considered as a main
effect when analyzing PARK7 luciferase assay.

Results
Phenotypic data analysis
Animal birth weight and live weight were collected (Fig. 1)
and statistical analysis showed that there were no signifi-
cant differences in birth weight and live weight between
callipyge (+/C) and normal lambs (+/+). The callipyge
lambs had significantly heavier longissimus dorsi, semi-
membranosus, semitendinosus and triceps brachi, ranging
from 23% to 17% greater relative to muscles of normal
lambs (Fig. 1), thus these four muscles are referred to as
“hypertrophied muscles” in this study. No significant
differences were detected in supraspinatus, infraspinatus,
and heart; hereafter these are referred to as “non-hyper-
trophied muscles”. These results verified the muscle
specific phenotype of hypertrophy in the experimental
samples.

Muscle specific gene expression
The mRNA abundance of the 25 differentially expressed
transcripts identified from a previous study [24] were
assayed by quantitative PCR. To investigate the shift of
myosin heavy chain isoforms in callipyge animals, four
myosin heavy chain genes (MYH1, MYH2, MYH4,
MYH7) were also examined in this study. The complete
set of primers for all of the genes analyzed by
quantitative PCR and the PCR cycling conditions were
given in Additional file 1. The least-square means for
gene expression in all seven muscles was given in
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Additional file 3. The p-values for differential expressed
genes in seven muscles were listed in Additional file 4.
The expression of Ribosomal protein, large P0 (RPLP0)

was used as a control gene. RPLP0 expression was not
significantly different in the two genotypes in all seven
muscles (Additional file 5), which indicated that equiva-
lent amounts of RNA were used for cDNA synthesis and
for quantitative PCR. Compared to normal lambs, the
expression of DLK1 was significantly increased in hyper-
trophied muscles with semimembranosus having the
largest magnitude of increase (11-fold); and triceps bra-
chi had the smallest increase (6.6-fold). There were no
significant differences in supraspinatus, infraspinatus
and heart (Fig. 2a). In contrast to DLK1, RTL1 expres-
sion in normal lambs was extremely low in longissimus
dorsi, semitendinosus, triceps brachi and supraspinatus
with an average log value of 1.14, and its expression level
was barely detectable in semimembranosus, infraspinatus
and heart with average log value is less than 1 (Fig. 2b).
The expression of RTL1 was significantly increased in
callipyge lambs in all the assayed muscles with an aver-
age log value for 4.6. The expression patterns of MEG3
and MEG8 were quite similar since both of their expres-
sion levels were significantly increased in the hypertro-
phied muscles (Fig. 2c and d). The callipyge lambs also
had significantly increased MEG3 expression (6-fold, P
= 0.0323) in supraspinatus (Fig. 2d). There was a trend

Fig. 1 Muscle hypertrophy in callipyge sheep. There were no differences
in the birth weights (BW) and live weights (LW) between callipyge (+/C)
and normal lambs (+/+). Callipyge lambs had significantly heavier
longissimus dorsi (LD), semimembranosus (SM), semitendinosus (ST) and
triceps brachii (TB) muscles. There were no differences in muscle weights
for the supraspinatus (SS), infraspinatus (IS) and heart (HT). Significant
differences are indicated by (*; P< 0.05, or **; P< 0.01) between callipyge
and normal lambs within each muscle

a

c

b

d

Fig. 2 Transcript abundance of genes from the DLK1-DIO3 locus. a DLK1; b RTL1; cMEG8 and dMEG3. Least square means and standard errors for
log transcript abundance are shown for each muscle and genotype, callipyge (+/C) and normal (+/+). The hypertrophied muscles are LD, SM, ST,
and TB and the non-hypertrophied muscles are SS, IS and HT. The increased expression of paternally allele-specific genes DLK1 and RTL1, and the
maternal allele-specific non-coding RNA MEG8 and MEG3 in callipyge hypertrophied muscles are shown. Significant differences are indicated by
(*; P < 0.05, or **; P < 0.01) between genotypes within each muscle
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towards significance in MEG8 expression (P = 0.0678)
(Fig. 2c). The expression patterns of these imprinted
genes in the DLK1-DIO3 locus were consistent with pre-
vious reports [13, 15].
The expression of several myosin isoforms were exam-

ined as markers for muscle hypertrophic response. The
differential expression of myosin isoforms showed the
established fiber type changes in callipyge muscle. A pre-
vious study reported the significant and strong up-
regulation of muscle genes characterized of type IIb
(MYH4) and down-regulation of genes characterized of
type IIa fibers (fast oxidative/glycolytic) (MYH2) and
type 1 fibers (slow oxidative) (MYH7) in hypertrophied
muscles [53]. The present study confirmed this pheno-
type by showing an average of 60-fold increase in MYH4
expression in the hypertrophied muscles (Fig. 3a).
MYH1 is the most abundant myosin isoform measured
in the skeletal muscles and its mRNA abundance was
significantly increased in semimembranosus by 2.5-fold
(Fig. 3b). MYH2, which characterized an intermediate
fiber type between fast and slow fibers, was relatively un-
changed in triceps brachi, but down-regulated in other
hypertrophied muscles, particularly in longissimus dorsi
(6-fold) (Fig. 3c). The mRNA abundance of MYH7 was
only down-regulated in semimembranosus (1.6-fold),
which is different from the previous report indicating a

decreased level of MYH7 in longissimus dorsi (Fig. 3d)
[7, 9, 53]. Overall, the myosin heavy chain gene expres-
sion results confirmed the reported callipyge phenotype
with increased fast-glycolytic and decreased slow-
oxidative myofibers [9, 53].
Gene expression profiles for the 23 transcripts, identified

from the microarray analysis [24], across the 7 muscle types
are shown in Fig. 4. Five genes including Parkinson Protein
7 (PARK7, also known as DJ-1) (Fig. 5a), Deoxynucleotidyl-
transferase, terminal, interacting protein 1 (DNTTIP1) (Fig.
5b), Solute carrier family 22 member 3 (SLC22A3) (Fig. 5c),
protein-lysine methyltransferase 21E (METTL21E) (Fig. 5d),
and cAMP specific phophodiesterase 4D (PDE4D) (Fig. 5e)
were specifically up-regulated in the hypertrophied muscles,
but not in the non-hypertrophied muscles, resembling
DLK1 expression pattern. Therefore, these five genes are
the potential target genes that may directly respond to
DLK1 signaling in hypertrophied muscles. The changes in
gene expression of PARK7 in hypertrophied muscles were
small relative to the other four genes, but significantly dif-
ferent from normal muscles with semimembranosus having
the biggest 6.1-fold increase (Fig. 5a). DNTTIP1 had the
biggest magnitude of increase in longissimus dorsi (6.8-fold)
and smallest increase in semimembranosus (5.6-fold) (Fig.
5b). There was a substantial up-regulation of SLC22A3 in
hypertrophied muscles with the magnitude ranging from 8.

a

c

b

d

Fig. 3 Transcript abundance of myosin heavy chain genes. aMYH4; bMYH1; cMYH2 and dMYH7. Least square means and standard errors for log
transcript abundance in 100 ng of total RNA are shown for each muscle and genotype. Callipyge animals indicated by +/C, and normal animals
are represented by +/+. LD, SM, ST, and TB are hypertrophied muscles, SS, IS and HT are non-hypertrophied muscles. Samples are from 30 to
35 days of age lamb. Significant differences are indicated by (*; P < 0.05, or **; P < 0.01) between callipyge and normal lambs within each muscle
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1-fold to 12.5-fold (Fig. 5c). The average mRNA abun-
dances for METTL21E (Fig. 5d) and PDE4D (Fig. 5e) in
hypertrophied muscles were 8.4-fold and 5-fold greater
relative to normal lambs. In addition to these five tran-
scripts, a muscle specific expression pattern was observed
for all of the genes measured (Fig. 4). In consistent with
previous microarray and quantitative PCR study using long-
issimus dorsi and semimembranosus [24], majority of the 23
transcripts were differentially expressed in these two muscle
types in the current study. Many of these genes are meta-
bolic in nature; for example, PFKM (phosphofructokinase,
muscle) was up-regulated in three of the four hypertrophied
muscles and LPL (Lipoprotein Lipase) was down-regulated
in two of the four hypertrophied muscles, therefore they
are likely to be involved in response to the changes of MYH
isoforms and metabolic demands in callipyge lambs rather
than direct response to DLK1 signaling.

Effects of DLK1 on potential direct target genes and myosin
heavy chain gene expression
In order to examine the effect of DLK1 signaling on the
expression of potential target genes, we treated myoblasts
and myotubes with recombinant DLK1 protein. Since

C2C12 cells over-expressing Dlk1 failed to proliferate [23],
primary myoblasts were plated onto Matrigel containing
recombinant DLK1 protein to enable DLK1 to act as li-
gands for cell surface receptors. Primary myoblasts were
induced to fuse and mRNA was collected at 24 h intervals
to a maximum of 3 days (D0, D1, D2 and D3). The ex-
pression patterns of myosin heavy chain genes were also
examined as controls for cell differentiation. Notably, the
expression of most genes examined dramatically reduced
1 day after differentiation (D2 and D3), which may be the
result of loss of DLK1 recombinant protein effects after
48 h (Fig. 6a and b). Therefore, the emphasis was put on
data from myoblasts (D0) and myotubes (D1). The mean
fold change of each gene for DLK1 treatment was com-
pared to its expression level in control treatment. The
mRNA abundance of Dnttip1 was significantly increased
by DLK1 treatment in both D0 myoblasts and D1 myo-
tubes (Fig. 6a). Specifically, DLK1-treated D0 myoblasts
had 1.4-fold increase in Dnttip1 expression and the
DLK1-treated D1 myotubes had 1.7-fold increase. The
same trend was also observed for Pde4d expression with
1.4-fold increase in DLK1 treated D0 myoblasts and 1.38-
fold increase in DLK1 treated D1 myotubes. The

Fig. 4 Hierarchal clustering of candidate gene expression pattern in 7 Muscles. Columns for the seven muscles were fixed and rows representing
gene expression were subject to clustering. The fold change of transcript abundance for the ratio of callipyge to normal was transformed to log2.
The color scale for this heat map is red-orange-yellow, where the red indicates the magnitude of the fold change in callipyge is higher than
normal and yellow represents gene expression was lower in callipyge than normal muscle. Significant differences are indicated by (*P<0.05,
**P<0.005 and ***P<.0005) between callipyge and normal lambs within each muscle
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expression of Mettl21e has an opposite trend in myoblasts
and myotubes with significant increased expression in
DLK1- treated D0 myoblasts and significant reduced ex-
pression in DLK1-treated D1 myotubes (Fig. 6a). However,
the mRNA abundance of Park7 was not significantly
changed in the presence of DLK1 (Fig. 6a). Slc22a3 was
tested but not reported in this assay since its expression
was too low to be reliably quantified. The expression of
Myh4 was very low in D0 myoblasts and no significant dif-
ferences were detected between control and DLK1 treat-
ments (Fig. 6b). However, after differentiation, the mRNA
abundance of Myh4 was 1.8-fold (P < 0.0001) higher in the
DLK1 treated D1 myotubes than control treatment. Sur-
prisingly, the expression of Myh7 was significantly in-
creased in both DLK1-treated myoblasts and myotubes
with an average 1.4-fold increase (Fig. 6b), which was

opposite to callipyge lambs whose MYH7 expression are
lower than normal lambs. There were no significantly dif-
ferences between DLK1 treatment and control treatment
in Myh1 and Myh2 expression at D0 and D1.

Effects of potential direct target genes on Myh4 and
Myh7 luciferase activity
In order to determine whether PARK7, DNTTIP1, and
METTL21E could influence myosin isoform expression
similar to what occurs in callipyge muscle, a series of
luciferase assays were conducted to test the effects of
these candidate genes on Myh4 and Myh7 promoter
activities. The luciferase assays were conducted by co-
transfection of the candidate gene cDNA constructs as
effector plasmids together with Myh4 (pGL3IIB2.6) or
Myh7 (p-3542β-MHCluc) luciferase reporter plasmids in

e

c

a

d

b

Fig. 5 Transcript abundance of the candidate target genes in 7 Muscles. a PARK7; b DNTTIP1; c SLC22A3; dMETTL21E; and e PDE4D. Least square
means and standard errors for log transcript abundance are shown for each muscle and genotype, callipyge (+/C) and normal (+/+). Five genes
exhibited co-expression with DLK1 induced hypertrophy; PARK7, DNTTIP1, SLC22A3, METTL21E, and PDE4D were up-regulated in hypertrophied
muscles, LD, SM, ST, and TB but not in the non-hypertrophied muscles SS, IS and HT. Significant differences are indicated by (*; P < 0.05,
or **; P < 0.01) between genotypes within each muscle
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primary myoblasts. The amount of effector plasmid that
was co-transfected was titrated for each plasmid with
addition of null vector (pGWCAT) to maintain equal
amounts of input DNA. After transfection, myoblasts
were differentiated into myotubes for 3 days. The expres-
sion of effector protein from the vectors were confirmed
by transfection of C2C12 cells. The cells were stained with
corresponding antibodies after transfection (DNTTIP1 in
Additional file 6, PARK7 in Additional file 7 and MET-
TL21E in Additional file 8). These results validated the ex-
pression of these constructs and also illustrated the nuclear
localization of DNTTIP1, and the nuclear and cytoplasmic
localizations of PARK7, METTL21E and GWCAT.
There was a dose effect for DLK1 induced Myh4 lucif-

erase activity. Transfecting DLK1 significantly increased
Myh4 luciferase activity at the high concentration (48%)
(P = 0.0012) (Fig. 7a). The same effect was also observed
in DNTTIP1 treatment; higher concentration (24%) of
DNTTIP1 resulted in significantly increase in Myh4 lu-
ciferase activity (P < 0.0001) (Fig. 7b). In this experiment,
less plasmid DNA was used for DNTTIP1 because it was
a nuclear factor and predicted to have a strong effect on
downstream targets. Conversely, adding METTL21E (60%)
significantly decreased Myh4 luciferase activity (P = 0.0126)
by 16.5% (Fig. 7c). An opposite dose response was observed
using Myh7 luciferase assay for DLK1 and DNTTIP1 treat-
ments. A 35% decrease in Myh7 luciferase activity occurred
with a high concentration of either DLK1 (48%) (Fig. 7a) or
DNTTIP1 (24%) (Fig. 7b) treatment. Adding METTL21E,
in contrast, significantly increased Myh7 luciferase activity
even at a low concentration (30%, P = 0.0135 relative to
control) (Fig. 7c).
Since PARK7 was assumed as a positive regulator in

the PI3K/AKT pathway, which was initiated by the bind-
ing of IGF1 to its receptor [24, 58], different concentra-
tions of IGF1 were applied to the myotubes in order to
induce a differential response in PARK7 treatment. Stat-
istical analysis indicated the overall effect of PARK7 was
significant in both Myh4 (P = 0.0004) (Fig. 8a) and Myh7
(P < 0.0001) (Fig. 8b) luciferase assays. Specifically, with
a higher concentration of IGF1 (100 ng/mL) treatment,
adding PARK7 even at a low concentration (30%) signifi-
cantly increased Myh4 luciferase activity (P = 0.0007).
There is a similar trend at an IGF1 concentration of
200 ng/mL with 30% input of PARK7 significantly in-
creasing Myh4 luciferase activity by 20% (Fig. 8a). No
significant difference was found at low IGF1 concentra-
tion (50 ng / mL) and no added IGF1 treatment. There
was a dose effect for IGF1 treatment in the Myh4 lucif-
erase assay, however, Myh7 luciferase activity was un-
affected by IGF1 treatment. A dose response for PARK7
was observed in PARK7 induced Myh7 luciferase activity.
Adding PARK7 (60%) significantly reduced Myh7 lucifer-
ase activity regardless of IGF1 concentrations (Fig. 8b).

b

a

Fig. 6 Transcript abundance of candidate genes and myosin heavy
chain genes in DLK1-treated myoblasts and myotubes. Primary
myoblasts were cultured on Matrigel (Control) or Matrigel plus
recombinant DLK1 protein for 24 h (D0) and induced to differentiation
for up to 72 h. RNA was collected at 24 h intervals; D0: myoblasts in
proliferation medium, D1: 24 h; D2: 48 h and D3: 72 h in differentiation
medium. a Dnttip1 and Pde4d expression were significantly increased
in DLK1 treatment at D0 and D1. Mettl21e expression was highly
elevated at D0 but immediately decreased after differentiation (D1).
The expression of Park7 was not significantly altered by DLK1
treatment. b The mRNA abundance of Myh4 was not significantly
changed in myoblasts (D0) but was highly elevated after 24 h of
myotube differentiation (D1) with DLK1 treatment. Expression of Myh7
expression was significantly increased in D0 and D1. No significant
differences were observed in the expression of Myh2 and Myh1.
Significance differences (*; P < 0.05) between control and DLK1
treatment within differentiation time (D0-D3)
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Discussion
In food animal agriculture, there is a need to identify the
mechanisms that can improve the efficiency of muscle
growth and protein accretion. Callipyge lambs have im-
proved feed efficiency with greater than 35% more muscle
mass, which shows that much higher muscle growth is
biologically possible. Therefore callipyge muscle hyper-
trophy provides a unique model for investigating the
genes that are potentially rate limiting for muscle growth.
The transcripts examined in the current study were

initially identified and validated in a previous postnatal de-
velopmental series (10, 20, 30 days and 80 days) by micro-
array analyses [24].
The animals in this study reproduced the established

phenotype that the callipyge lambs have similar live weights
as normal lambs [4, 6], and the well-recognized pattern of
muscle hypertrophy with increased muscle mass in the pel-
vic limb and the torso relative to the thoracic limbs [3]. The
gene expression analysis in the DLK1-DIO3 locus showed
the established pattern for induction of muscle hypertrophy
in callipyge lambs. There were high levels of expression of
DLK1 and RTL1 in affected muscles from the callipyge
lambs. DLK1 was only up-regulated in hypertrophied mus-
cles but the up-regulation of RTL1 was also detected in the
three non-hypertrophied muscles. The expression levels of
MEG3 and MEG8 were increased in supraspinatus. This
combined evidence suggests that RTL1 alone is insufficient
to induce muscle hypertrophy and reinforces the

b

a

Fig. 8 Effect of PARK7 on myosin promoter activity. Primary
myoblasts were transfected with different compositions of effector
constructs pPARK7-pcDNA3.2 and pGWCAT- pcDNA3.2 (control)
plasmids together with Myh4 or Myh7 luciferase reporter plasmids.
The pRL-SV40 plasmid served as a transfection efficiency control.
Myosin promoter-luciferase reporter activity was adjusted for
transfection efficiency and normalized across all samples on the
plate using renilla luciferase activity. a Transfection of PARK7 effector
plasmid (input 30% and 60%) significantly elevated Myh4 luciferase
activity at 100 and 200 ng/mL concentrations of IGF1; b Transfection
of PARK7 plasmid significantly decreased Myh7 luciferase activity
regardless of IGF1 concentration. Differing lower case letters indicate
significance (P < 0.05) within each IGF1 treatment

c

b

a

Fig. 7 Effects of DLK1, DNTTIP1 and METTL21E on myosin promoter
activity. Increased Myh4 and decreased Myh7 luciferase activity was
examined in DLK1 (a) and DNTTIP1 (b) over-expressed myotubes.
Over-expression of METTL21E (c) decreased Myh4 and increased
Myh7 luciferase activity. Primary myoblasts were transfected with
different compositions (indicated by percentage in graph) of effector
constructs together with Myh4 or Myh7 luciferase plasmids. The pRL-
SV40 plasmid was transfected into cells as a transfection efficiency
control. The transfected cells were put into 96-well plates in growth
media overnight and fused into myotubes for 3 days. Luciferase
activity was adjusted for transfection efficiency by multiplying the
firefly luciferase activity of a given well by the ratio of mean renilla
luciferase activity for all wells divided by renilla luciferase activity of the
given well to produce units of adjusted luciferase activity. Differing
lower case letters indicate significance (P < 0.05) within each test
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conclusion that DLK1 is the primary inducer of muscle
hypertrophy. Transgenic mice over-expressing either Dlk1
or ovine RTL1 have been shown to have increased muscle
mass and both genes have been shown to be targets of
microRNA hosted by the maternal ncRNA genes in the
DLK1-DIO3 imprinted cluster to account for polar over-
dominance inheritance mechanisms [32]. Therefore, here
we include RTL1 as a possible synergistic factor to act in
concert with DLK1 to induce the callipyge phenotype.
Analysis of several myosin isoforms showed up-

regulation of fast twitch glycolytic myosin isoform (MYH4)
in all hypertrophied muscles and down-regulation of the
fast twitch mixed oxidative and glycolytic myosin isoform
(MYH2) in hypertrophied muscles except triceps brachi.
The changes in muscle fiber types are indicative for muscle
metabolism, which have been reported to be directly associ-
ated with elevated postnatal expression of DLK1 protein in
muscle fibers [26]. A decrease in slow twitch oxidative
MYH7 was only detected in the semimembranosus but not
in other hypertrophied muscles, which is inconsistent with
previous observation of the decreases in MYH7 expression
and smaller oxidative myofibers in longissimus dorsi [7, 26,
53]. The discrepancy is likely due to the younger animals
used in the current study, since the decreased level of
MYH7 is not evident at 30–35 days of age.
Among the 23 examined transcripts, five genes,

DNTTIP1, PARK7, PDE4D, SLC22A3, and METTL21E,
were up-regulated specifically in hypertrophied muscles,
resembling DLK1 expression pattern in seven muscles
and thus these genes were considered as the secondary
targets in response to DLK1 signaling. Only Dnttip1 and
Pde4d were up-regulated in DLK1-treated myoblasts
and myotubes suggesting a direct signaling effect of
DLK1 on the transcriptional expression of these two
genes. Taken together, these combined results indicated
that DNTTIP1 and PDE4D are potential secondary
effector genes responding to DLK1 signaling. The up-
regulation of Myh4 in DLK1-treated myotubes was con-
sistent with analyses of hypertrophied muscle from

callipyge sheep indicating DLK1 signaling have an effect
on fast-twitch myofiber formation. DNTTIP1 positively
regulated Myh4 and negatively influenced Myh7 lucif-
erase activity, implying a direct effect of the transcrip-
tion factor on muscle fiber switch in callipyge
muscles (Fig. 9b).
Dnttip1 is a transcriptional cofactor that negatively reg-

ulates the activity of terminal deoxynucleotidyltransferase
(TdT), which is a DNA polymerase synthesizing the N-
region of B and T-cell receptor genes, independent of a
DNA template [59]. Dnttip1 is ubiquitously expressed,
exclusively localized in the nucleus and it encodes a pro-
tein with a helix-turn-helix and AT-hook-like motif that
preferentially binds to AT-rich regions of double-stranded
DNA [59, 60]. This information suggests broader roles of
this protein in other tissues. Notably, the promoter region
of Myh4 gene contains two AT-rich motifs [61] which
indicate that Dnttip1 may bind to the Myh4 promoter
region to active its transcription. Moreover, DNTTIP1 is
reported to interact with HDAC1 and HDAC2 during M
phase [62]. Further protein structural analysis confirmed
that DNTTIP1 forms a stoichiometric compex with
HDAC1 and the ELM2-SANT domain and is required for
the stable assembly of the cyclin A associated MiDAC
complex [63]. The HDACs usually down-regulate tran-
scriptional activity by deacetylating histones [64]. The
interaction with HDACs may facilitate Dnttip1 regulation
of gene expression in muscles. The function of Dnttip1 in
muscle growth is unclear.
Both PDE4D and SLC22A3 have increased expression

only in hypertrophied muscles, which implied they may
play roles in DLK1-induced muscle hypertrophy. The
luciferase analysis was not performed for Pde4d in this
study due to the confounding expression of numerous
alternatively spliced transcripts that dictate subcellular
localization and the specific cAMP pools that are
affected [65]. Pde4d is a member of phosphodiesterases
(PDEs), which catalyze the hydrolysis of cyclic nucleo-
tides cAMP into the inactive substrate 5’-AMP. cAMP

a b

Fig. 9 Schematic diagram showing the hypothesis (a) and conclusions (b) of this study
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signaling is important for muscle hypertrophy and
metabolism [66]. The β2-adrenergic receptors (β2-ARs)
as cAMP inducers in skeletal muscle are of particular
importance since they are major targets are β-agonists.
The phenotype observed in callipyge hypertrophy is very
similar to muscle growth induced by β-agonists, which
includes increased muscle mass and decreased adiposity
[67, 68]. Activation of Pde4d has been shown to be an
important feedback regulation system contributing to
the transient nature of the β2-ARs response and it repre-
sents a major adaptive mechanism required for physio-
logical β2-ARs signaling [69]. Callipyge lambs do not
respond to β-agonist supplementation with additional
muscle hypertrophy [70]. Therefore, the up-regulation of
PDE4D in hypertrophied muscles may be associated with
a stronger response to physiological levels of adrenaline
in young growing lambs.
Slc22a3 / Oct3 (Solute carrier 22A3 / Organic cation

transporter 3) is an organic cation transporter and is
expressed in a wide range of tissues [71, 72]. By contrast,
other two Slc22a gene family members, including Slc22a1
and Slc22a2, are highly expressed in liver and kidney re-
spectively [71]. Slc22a3 knockout mice did not show overt
phenotypic abnormalities indicating the loss of Slc22a3
could be potentially compensate by other two members
since they share functional similarities by transporting cat-
echolamines and neurotoxin MPP+ (1-methyl-4-phenyl-
pyridinium) [72–76]. Since the knockout mouse model
failed to show any skeletal muscle abnormality, we suspect
that SLC22A3 is not a direct transcriptional response to
DLK1 signaling in hypertrophied muscles. Herein, it was
excluded from the luciferase study. Slc22a3 mediates the
uptake of many important endogenous amines, particu-
larly catecholamines such as norepinephrine and dopa-
mine, and exogenous drugs, such as metformin in a
variety of tissues [77–80]. Studies have shown that in ex-
cretory organs, such as kidney and liver, Slc22a3 facilitated
the uptake of organic cations across the basalateral mem-
brane into the cell [81, 82]. Slc22a3 is expressed in skeletal
muscle [83] but its up-regulation in hypertrophied mus-
cles is now apparent from the current investigation and
our earlier studies [24, 53]. It is assumed that the high-
levels of SLC22A3 may enhance the up-take of amines in-
cluding amino acids and biogenic amines that stimulate
muscle growth in callipyge lambs. Further studies will be
needed to explore its function in muscle development and
hypertrophy.
Since Park7 was not up-regulated in DLK1-treated cells,

it may not act as a direct transcriptional response to
DLK1 signaling but may be a fundamental tertiary re-
sponse to increased muscle growth. Interestingly, double
muscled cattle have elevated levels of PARK7 gene expres-
sion and had an increased proportion of white fast-twitch
glycolytic fibers as well [84]. With increased PARK7

expression in hypertrophied muscles and its regulation of
Myh4 and Myh7 luciferase activity, it may have a physio-
logical role in response to the DLK1-induced muscle
hypertrophy. Park7 encodes a ubiquitously expressed,
highly conserved protein that was originally identified as
an oncogene that transforms NIH3T3 cells in cooperation
with the activated ras gene [85]. Park7 has been associated
with diverse biological processes including oxidative stress
response, transcriptional regulation and cell survival [86–
88]. Earlier in vitro study showed the significantly larger
diameters and more total sarcomeric myosin expression
in the Park7 (+/+) myotubes than in the Park7 (−/−) myo-
tubes partially due to the altered activity of the PI3K/AKT
pathway [27]. The up-regulation of PARK7 in callipyge
lambs may lead to the enhanced activity and/or prolonged
sustained activity of the PI3K/AKT pathway and in turn
to increase the response of the downstream elements in
the PI3K/AKT pathway to increase protein synthesis and
muscle mass. Moreover, over-expression of constitutively
active AKT resulted in the hypertrophy of glycolytic myo-
fibers not oxidative myobfiers [89]. This study was sup-
ported by the identification a regulatory cascade that
regulated AKT activation to drive the metabolic and con-
tractile specification of fast-twitch muscle fibers [90].
Therefore, Park7 induced increase in Myh4 luciferase ac-
tivity could be a result of enhanced activation of AKT.
METTL21E up-regulated Myh7 and down-regulated

Myh4 luciferase activity. Although this pattern is
different from DLK1, METTL21E may still have a
physiological role in callipyge muscle hypertrophy since
it is consistently up-regulated in hypertrophied muscles
in a manner similar to DLK1. Mettl21e has nuclear
localization, but it mostly accumulated in perinuclear
cytoplasm (Additional file 8). Hence, it may not act as a
direct transcriptional response to DLK1 signaling. The
results from the luciferase assay suggested METTL21E
may not regulate the myosin heavy chain gene expres-
sion, but it may be involved in other biological activities.
Accordingly, skeletal muscle has the highest expression
level of Mettl21e than any other tissues in mouse (http://
biogps.org/#goto=genereport&id=403183). Mettl21e en-
codes a methyltransferase domain similar to members of
the S-adenosylmethionine (SAM) -dependent methyl-
transferase family [91]. This family of methyltransferases
catalyzes the transfer of a methyl group (CH3) from a
donor, generally S-adenosyl-L-methionine (AdoMet), to
various acceptor molecules [92, 93]. In human, there is no
METTL21E ortholog, but the bovine METTL21E gene
shares 51% similarity to human METTL21C. Due to the
species specificity, the function of Mettl21e is not well
defined. However, thousands of substrates of SAM-
dependent methyltransferases has been identified [94].
These substrates include nucleic acids for regulation of
gene expression, DNA or proteins for repair or control of
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signal transduction pathways, hormones and neurotrans-
mitters, and biosynthetic intermediates to produce sec-
ondary metabolites [93]. The bioactivities of the substrates
may indicate diverse functional roles of METTL21E dur-
ing the callipyge muscle development.

Conclusions
In summary, the present study extended knowledge on
the genes involved in muscle hypertrophy in the callipyge
lambs. The study provided additional support that RTL1
alone was insufficient to induce muscle hypertrophy and
concluded that DLK1 was the likely primary inducer of
the hypertrophy phenotype. From analyses of DNTTIP1,
PARK7, SLC22A3, PDE4D and METTL21E expression, it
is proposed that DNTTIP1 and PDE4D are the secondary
effector genes responding to DLK1 signaling (Fig. 9b) and
DNTTIP1 may respond DLK1 signaling to modulate my-
osin heavy chain gene expression. We also discovered
PARK7 can play a role in muscle fiber switching. Identifica-
tion of the genes and the signaling pathway that cause the
callipyge phenotype will enrich the understanding of post-
natal muscle growth in sheep and potentially has applica-
tion to other livestock species used for meat production.
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