52 research outputs found

    Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B

    Get PDF
    Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions

    MANAGEMENT OF MICROBIAL BIOFILM USING NANO PARTICLE: A REVIEW

    Get PDF
    Microorganisms create biofilms, which are surface adherent community structures. These biofilms are essential to the infection process mediated by microbes. Antibiotic resistance is another thing that biofilm spreads, which is a big worry these days. Diverse bacteria use diverse mechanisms to create biofilms, and these mechanisms often depend on the environment in which they grow as well as strain-specific characteristics. Many chemical compounds are discovered to be useful in investigating the biofilm management method. The usefulness of nanoparticles in preventing biofilm-mediated disease is the subject of the current review. Using nanoscale particles to fight microbial biofilm is one possible way to treat these persistent diseases. Recently, antibacterial agents have been delivered employing innovative nanotechnology-based antimicrobial activity in order to destroy planktonic bacteria and their biofilm structures. In the sphere of medicine, this technique is now considered developing. Antimicrobial-loaded nanoparticles alone or in combination with other materials could increase the bacterial activity of nanomaterials to prevent the formation of biofilms. These particles are reactive substances that readily penetrate the matrix, serving as a barrier to numerous antibodies. One type of nanoparticle, called AgNPs, exhibited antibacterial action by rupturing the integrity of the bacterial cell membrane, which resulted in the release of cellular content and eventual death. Additionally, polymeric-based formulations like hydrogel, polymeric microspheres, nanospheres, and smart olimer, as well as lipid-based nanoparticles like liposomes and solid lipid nanoparticles, have been used in the biofilm treatment. Additionally, research is ongoing with various metals like copper, zinc, and their oxides. Here, we talked about the safety issues and the promise of metal oxide nanoparticles. The pathogens are effectively killed by NPs without endangering other cells or having any negative effects on living cells

    Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA

    Get PDF
    Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general

    RNA Helicase DDX17 Inhibits Hepatitis B Virus Replication by Blocking Viral Pregenomic RNA Encapsidation

    Get PDF
    DDX17 is a member of the DEAD-box helicase family proteins involved in cellular RNA folding, splicing, and translation. It has been reported that DDX17 serves as a cofactor of host zinc finger antiviral protein (ZAP)-mediated retroviral RNA degradation and exerts direct antiviral function against Raft Valley fever virus through binding to specific stem-loop structures of viral RNA. Intriguingly, we have previously shown that ZAP inhibits hepatitis B virus (HBV) replication through promoting viral RNA decay, and the ZAP-responsive element (ZRE) of HBV pregenomic RNA (pgRNA) contains a stem-loop structure, specifically epsilon, which serves as the packaging signal for pgRNA encapsidation. In this study, we demonstrated that the endogenous DDX17 is constitutively expressed in human hepatocyte-derived cells but dispensable for ZAP-mediated HBV RNA degradation. However, DDX17 was found to inhibit HBV replication primarily by reducing the level of cytoplasmic encapsidated pgRNA in a helicase-dependent manner. Immunofluorescence assay revealed that DDX17 could gain access to cytoplasm from nucleus in the presence of HBV RNA. In addition, RNA immunoprecipitation and electrophoretic mobility shift assays demonstrated that the enzymatically active DDX17 competes with HBV polymerase to bind to pgRNA at the 5' epsilon motif. In summary, our study suggests that DDX17 serves as an intrinsic host restriction factor against HBV through interfering with pgRNA encapsidation. IMPORTANCE Hepatitis B virus (HBV) chronic infection, a long-studied but yet incurable disease, remains a major public health concern worldwide. Given that HBV replication cycle highly depends on host factors, deepening our understanding of the host-virus interaction is thus of great significance in the journey of finding a cure. In eukaryotic cells, RNA helicases of the DEAD box family are highly conserved enzymes involved in diverse processes of cellular RNA metabolism. Emerging data have shown that DDX17, a typical member of the DEAD box family, functions as an antiviral factor through interacting with viral RNA. In this study, we, for the first time, demonstrate that DDX17 inhibits HBV through blocking the formation of viral replication complex, which not only broadens the antiviral spectrum of DDX17 but also provides new insight into the molecular mechanism of DDX17-mediated virus-host interaction

    Characterization of the Termini of Cytoplasmic Hepatitis B Virus Deproteinated Relaxed Circular DNA

    Get PDF
    The biosynthesis of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) requires the removal of the covalently linked viral polymerase from the 5' end of the minus strand [(-)strand] of viral relaxed circular DNA (rcDNA), which generates a deproteinated rcDNA (DP-rcDNA) intermediate. In the present study, we systematically characterized the four termini of cytoplasmic HBV DP-rcDNA by 5'/3' rapid amplification of cDNA ends (RACE), 5' radiolabeling, and exonuclease digestion, which revealed the following observations: (i) DP-rcDNA and rcDNA possess an identical 3' end of (-)strand DNA; (ii) compared to rcDNA, DP-rcDNA has an extended but variable 3' end of plus strand [(+)strand] DNA, most of which is in close proximity to direct repeat 2 (DR2); (iii) DP-rcDNA exhibits an RNA primer-free 5' terminus of (+)strand DNA with either a phosphate or hydroxyl group; and (iv) the 5' end of the DP-rcDNA (-)strand is unblocked at nucleotide G1828, bearing a phosphate moiety, indicating the complete removal of polymerase from rcDNA via unlinking the tyrosyl-DNA phosphodiester bond during rcDNA deproteination. However, knockout of cellular 5' tyrosyl-DNA phosphodiesterase 2 (TDP2) did not markedly affect rcDNA deproteination or cccDNA formation. Thus, our work sheds new light on the molecular mechanisms of rcDNA deproteination and cccDNA biogenesis.IMPORTANCE The covalently closed circular DNA (cccDNA) is the persistent form of the hepatitis B virus (HBV) genome in viral infection and an undisputed antiviral target for an HBV cure. HBV cccDNA is converted from viral genomic relaxed circular DNA (rcDNA) through a complex process that involves removing the covalently bound viral polymerase from rcDNA, which produces a deproteinated-rcDNA (DP-rcDNA) intermediate for cccDNA formation. In this study, we characterized the four termini of cytoplasmic DP-rcDNA and compared them to its rcDNA precursor. While rcDNA and DP-rcDNA have an identical 3' terminus of (-)strand DNA, the 3' terminus of (+)strand DNA on DP-rcDNA is further elongated. Furthermore, the peculiarities on rcDNA 5' termini, specifically the RNA primer on the (+)strand and the polymerase on the (-)strand, are absent from DP-rcDNA. Thus, our study provides new insights into a better understanding of HBV rcDNA deproteination and cccDNA biosynthesis

    Biological Functions of Intracellular Hepatitis B e Antigen

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The function(s) of the intracellular form of HBeAg, previously reported as the preCore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we propose to elucidate the translocation of p22 during its formation from endoplasmic reticulum (ER) to cytosol, how it differs from core in its inability to form a capsid and the biological functions of cytoplasmic and nuclear p22. Firstly, we have identified that a portion of p22, after the cleavage of its signal peptide in ER, is released back into the cytosol through an ERAD-independent mechanism, as neither wildtype nor dominant-negative p97 affected the ER-to-cytosol translocation of p22 or ER-Golgi secretion of HBeAg. Secondly, despite sharing the same sequence with core protein except for the extended 10 amino acid precore region at the N-terminus, we observed that p22 wildtype and C-7Q mutant are unable to form a capsid. Thirdly, we report that p22 but not the secreted HBeAg significantly reduced interferon stimulated response element (ISRE) activity and expression of interferon stimulated genes (ISGs) upon interferon-alpha (IFN- α) stimulation. Furthermore, in line with this, RNA-seq analysis of ISG induction profile from IFN-α treated patients showed that HBeAg(+) patients exhibited reduced and weak antiviral ISG upregulations compared to HBeAg(-) patients. Further, mechanistic study indicated that while p22 did not alter the total STAT1 or p-STAT1 levels in IFN-α treated cells, it blocked the nuclear translocation of p-STAT1 by interacting with karyopherin α1, indicating that the cytoplasmic p22 may impede JAK-STAT signaling to help the virus evade host innate immune response and cause resistance to IFN therapy in patients. Additionally, nuclear p22 and nuclear core were found to interact with the promoter regions (ISRE – containing) of ISGs, suggesting a new mechanism of inhibition of ISG expression upon stimulation. Finally, we found that the nuclear p22 can bind to cccDNA minichromosome and affects cccDNA maintenance and/or transcription. Thus, our results indicate that there is a novel ER sorting mechanism for the distribution of the intracellular and secretory HBeAg, and the intracellular HBeAg may contribute to HBV persistence by interfering with IFN-α elicited JAK-STAT signaling and regulating cccDNA metabolism

    Women Workers in India: Labour Force Trends, Occupatonal Diversificaton and Wage Gaps

    No full text
    Understanding the nature of work performed by women in India requires rst of all that we broaden our understanding of what is work, and recognize the di#erent kinds of socially necessary as well as other work. The nature of work and how to capture it in empirical data have indeed been among the most complicated and debated issues in social sciences. This is particularly so in societies where much work occurs in informal, often even very private, settings that can be very hard to identify, let alone measure. The fact that international de nitions of work and of economic activity have themselves been changing over time only adds to the complexity

    Common Presentation with Uncommon Diagnosis: Multifocal Epithelioid Hemangioendothelioma

    No full text
    A young female patient presenting with recurrent hemoptysis, neck swelling, and mediastinal mass mimicking lymphadenopathy was admitted to the Institute of Post Graduate Medical Education and Research and SSKM hospital, Kolkata, India. Clinical features, radiological studies, fibre optic bronchoscopy, and fine needle aspiration cytology from the neck swelling created a diagnostic dilemma until surgical resection and immunohistochemistry reports confirmed the diagnosis of multifocal epithelioid hemangioendothelioma, a rare vascular tumor with intermediate malignancy potential. Because it is a slow-progressing disease and due to the non-availability of standard chemotherapy, the patient, and her legal guardian, opted for palliative care only. She was asymptomatic for four years but again presented with hemoptysis, reappearance of the neck swelling on the same side, and a mediastinal mass compressing the superior vena cava and right pulmonary artery. This report describes the diagnostic problems and therapeutic challenges in the management of this rare tumor over a four-year follow-up period. The clinical course emphasizes the highly unpredictable nature of this tumor

    Estimate of entropy generation rate can spatiotemporally resolve the active nature of cell flickering

    Full text link
    We use the short-time inference scheme (Manikandan, Gupta and Krishnamurthy, Phys. Rev. Lett. 124, 120603, 2020), obtained within the framework of stochastic thermodynamics, to infer a lower-bound to entropy generation rate from flickering data generated by Interference Reflection Microscopy of HeLA cells. We can clearly distinguish active cell membranes from their ATP depleted selves and even spatio-temporally resolve activity down to the scale of about one μ\mum. Our estimate of activity is model--independent.Comment: 11 pages 6 figure
    • …
    corecore